机器学习-什么是 PCA?

ops/2025/2/12 12:24:38/

一、PCA是什么?

PCA 即主成分分析(Principal Component Analysis)哦!它是一种统计分析方法,主要用于掌握事物的主要矛盾。PCA能从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂问题。它工作的原理是通过投影的方式,将高维数据映射到低维的空间中,并尽量保证投影后的数据保留了原始数据的主要特性。

二、如何确定保留几个主成分?

确定PCA保留几个主成分的方法主要依赖于实际的应用场景和需求。一般来说,你可以根据数据的特征、模型的复杂度、以及计算资源的限制来决定。在sklearn的PCA实现中,你可以通过n_components参数来设定要保留的主成分个数。例如,如果你希望将原始数据降到一维,可以设定n_components=1。另外,你还可以设定n_components=‘mle’,这样PCA会自动选取特征个数,使得满足所要求的方差百分比。

三、PCA一般在什么场景下使用?

PCA通常用于处理高维数据集,特别是在数据预处理、数据压缩和特征提取等多个领域。例如,图像处理、基因数据分析和金融数据分析等领域都广泛应用了PCA。通过降低数据的维度,PCA不仅可以帮助我们简化模型,还能提高算法的运行效率,减少过拟合的风险。

四、LDA(Linear Discriminant Analysis) 和PCA的差异?

LDA(Linear Discriminant Analysis,线性判别分析)和PCA在多个方面存在明显的差异。首先,它们的出发点不同。
PCA主要是从特征的协方差角度,寻找数据投影后具有最大方差的方向;
而LDA则更多地考虑了分类标签信息,寻求投影后不同类别之间数据点距离最大化以及同一类别数据点距离最小化。

其次,它们的学习模式也不同。
PCA属于无监督式学习,通常作为数据处理过程的一部分,需要与其他算法结合使用;
而LDA是一种监督式学习方法,既可以用于降维,也可以进行预测应用,既可以组合其他模型一起使用,也可以独立使用。

最后,它们在降维后可用的维度数量上也存在不同。LDA降维后最多可生成C-1维子空间(分类标签数-1),与原始维度数量无关;
而PCA最多有n维度可用,即可以选择全部可用维度。


http://www.ppmy.cn/ops/30315.html

相关文章

DockerUI安装使用

DockerUI安装使用 主机环境 [roottest01 ~]# uname -a Linux test01 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20 16:44:24 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux [roottest01 ~]# cat /etc/redhat-release CentOS Linux release 7.5.1804 (Core)安装 [roottest01 ~]# doc…

MySQL常见问题解决和自动化安装脚本

常见问题 MySQL密码正确但无法登录的情况 这种情况一般都是因为缓存,使用mysql -u root -p123456直到成功登陆为止,并且进入之后重新修改密码,多次重复修改密码的命令并且再一次清除缓存后退出。 ALTER USER rootlocalhost IDENTIFIED WIT…

8 聚类算法

目录 0 背景 1 Kmeans 1.1 聚类数量k的确定 2 DBSCAN 2.1 三个点 2.2 算法流程 3 层次聚类 3.1 过程 4 基于分布的聚类:高斯混合模型 0 背景 聚类算法是一种无监督学习技术,用于将数据集中的数据点划分为不同的组或簇,使得同一组内的数据点彼此相…

集成框架 -- OSS

前言 接入oss必须有这两个文档基础 使用STS临时访问凭证访问OSS_对象存储(OSS)-阿里云帮助中心 前端上传跨域 正文 sts前后端通用,开通图示 AliyunSTSAssumeRoleAccess 后端实现代码 public static void main(String[] args) {String regionId "cn-ha…

Hadoop概述

大数据处理技术 对大数据技术的基本概念进行简单介绍,包括分布式计算、服务器集群和 Google 的 3 个大数据技术。 分布式计算 对于如何处理大数据,计算机科学界有两大方向。 第一个方向是集中式计算,就是通过不断增加处理器的数量来增强单…

为何软件IT行业重视创新而不是稳定?

为何软件IT行业重视创新而不是稳定?用户为此受苦:用户体验差! 彼得-蒂尔有一句名言:"竞争是失败者的事"。 如果没有必要,就不要把自己置于被迫竞争的境地。 我给年轻程序员的建议是,如果你想创…

7、Flink 自定义 WaterMarkGenerator 案例

1、MyWaterMarkWatermarkGeneratorPeriodic 该 watermark 生成器场景:数据源在一定程度上乱序,即某个最新到达的时间戳为 t 的元素将在最早到达的时间戳为 t 的元素之后最多 n 毫秒到达。 class MyBoundedOutOfOrdernessGenerator implements Watermark…

算法学习Day1——【数据结构】单调栈

1.什么是单调栈以及单调栈的作用 (1)定义 顾名思义,单调栈是一个有序的栈,可能从栈顶到栈底单调递增(单调递增栈),也有可能从栈顶到栈底单调递减(单调递减栈)。 &…