LearnOpenGL-笔记-其四

ops/2025/3/16 2:57:14/

上一篇笔记中结束了材质的内容,现在让我们进入新的部分:

光照贴图

光照贴图的概念其实非常简单,简单地说,我们希望不同的材质拥有不同的光照属性,所以不同的材质要应用不用的光照贴图,最常见的有我们的漫反射贴图和镜面反射贴图。

我们将纹理作为材质结构体的一部分,修改后的片元着色器定义如下:

#version 330 core
out vec4 FragColor;struct Material {sampler2D diffuse;sampler2D specular;    float shininess;
}; struct Light {vec3 position;vec3 ambient;vec3 diffuse;vec3 specular;
};in vec3 FragPos;  
in vec3 Normal;  
in vec2 TexCoords;uniform vec3 viewPos;
uniform Material material;
uniform Light light;void main()
{// ambientvec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;// diffuse vec3 norm = normalize(Normal);vec3 lightDir = normalize(light.position - FragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;  // specularvec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);  float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;  vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);
} 

然后在渲染循环里我们写这样一段代码:

float currentFrame = static_cast<float>(glfwGetTime());deltaTime = currentFrame - lastFrame;lastFrame = currentFrame;// input// -----processInput(window);// render// ------glClearColor(0.1f, 0.1f, 0.1f, 1.0f);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// be sure to activate shader when setting uniforms/drawing objectslightingShader.use();lightingShader.setVec3("light.position", lightPos);lightingShader.setVec3("viewPos", camera.Position);// light propertieslightingShader.setVec3("light.ambient", 0.2f, 0.2f, 0.2f);lightingShader.setVec3("light.diffuse", 0.5f, 0.5f, 0.5f);lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);// material propertieslightingShader.setFloat("material.shininess", 64.0f);// view/projection transformationsglm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);glm::mat4 view = camera.GetViewMatrix();lightingShader.setMat4("projection", projection);lightingShader.setMat4("view", view);// world transformationglm::mat4 model = glm::mat4(1.0f);lightingShader.setMat4("model", model);// bind diffuse mapglActiveTexture(GL_TEXTURE0);glBindTexture(GL_TEXTURE_2D, diffuseMap);// bind specular mapglActiveTexture(GL_TEXTURE1);glBindTexture(GL_TEXTURE_2D, specularMap);// render the cubeglBindVertexArray(cubeVAO);glDrawArrays(GL_TRIANGLES, 0, 36);// also draw the lamp objectlightCubeShader.use();lightCubeShader.setMat4("projection", projection);lightCubeShader.setMat4("view", view);model = glm::mat4(1.0f);model = glm::translate(model, lightPos);model = glm::scale(model, glm::vec3(0.2f)); // a smaller cubelightCubeShader.setMat4("model", model);glBindVertexArray(lightCubeVAO);glDrawArrays(GL_TRIANGLES, 0, 36);// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)// -------------------------------------------------------------------------------glfwSwapBuffers(window);glfwPollEvents();

没有什么新东西其实,就是给着色器中定义的参数赋值,就能实现光照贴图的更新。

投光物

我们之前讨论的光源都是一个点光源,简单的光源非常方便我们进行整个光照过程的模拟和研究,但是在实际的环境中,一个理想化的点光源是可遇不可求的。在这个章节里除了点光源我们还要讨论的是一些别的光源如平行光和聚光。

当光源离我们无限远或者可以被近似认为无限远时那这个光源发出的光线就都是平行的,平行光非常好处理因为无论哪里的平行光的方向都是一致的。

在代码中也非常好修改,更准确地是在片元着色器中关于光照的计算,我们之前的着色器写法是这样的:

#version 330 core
out vec4 FragColor;struct Material {sampler2D diffuse;sampler2D specular;    float shininess;
}; struct Light {vec3 position;vec3 ambient;vec3 diffuse;vec3 specular;
};in vec3 FragPos;  
in vec3 Normal;  
in vec2 TexCoords;uniform vec3 viewPos;
uniform Material material;
uniform Light light;void main()
{// ambientvec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;// diffuse vec3 norm = normalize(Normal);vec3 lightDir = normalize(light.position - FragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;  // specularvec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);  float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;  vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);
} 

而对于平行光来说:
 

#version 330 core
out vec4 FragColor;struct Material {sampler2D diffuse;sampler2D specular;    float shininess;
}; struct Light {//vec3 position;vec3 direction;vec3 ambient;vec3 diffuse;vec3 specular;
};in vec3 FragPos;  
in vec3 Normal;  
in vec2 TexCoords;uniform vec3 viewPos;
uniform Material material;
uniform Light light;void main()
{// ambientvec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;// diffuse vec3 norm = normalize(Normal);// vec3 lightDir = normalize(light.position - FragPos);vec3 lightDir = normalize(-light.direction);  float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;  // specularvec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);  float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;  vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);
} 

之前针对点光源来说,我们需要的是点光源的位置,用点光源与片元的向量相减得到光线方向;而平行光我们直接给定方向向量即可。

结果如图:

虽然可能不是很明显,但其实还是能看出:在木箱们的正上方有一个光源且该光源作用在木箱上的效果都几乎一样。

对于点光源来说,除了我们之前说的基本的计算光线方向的部分,一般来说我们还需要给点光源一个衰减系数让他根据距离逐渐减小光照。

#version 330 core
out vec4 FragColor;struct Material {sampler2D diffuse;sampler2D specular;    float shininess;
}; struct Light {vec3 position;  vec3 ambient;vec3 diffuse;vec3 specular;float constant;float linear;float quadratic;
};in vec3 FragPos;  
in vec3 Normal;  
in vec2 TexCoords;uniform vec3 viewPos;
uniform Material material;
uniform Light light;void main()
{// ambientvec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;// diffuse vec3 norm = normalize(Normal);vec3 lightDir = normalize(light.position - FragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;  // specularvec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);  float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;  // attenuationfloat distance    = length(light.position - FragPos);float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));    ambient  *= attenuation;  diffuse   *= attenuation;specular *= attenuation;   vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);
} 

可以看到我们的点光源的最后对冯模型中的三种光照都乘以了一个衰减系数,这个衰减系数总的来说由一个一次项一个二次项和一个常数项组成。

结果如图:

能够看到,距离较远的木箱的光照效果就非常普通,实现了随着距离增大而衰减的效果。

最后我们讨论的光源是聚光,聚光就是只在一定范围内的光,离开这个范围就不可见。

我们的手电筒的就是最好的聚光样例:

代码如下:

#version 330 core
out vec4 FragColor;struct Material {sampler2D diffuse;sampler2D specular;    float shininess;
}; struct Light {vec3 position;  vec3 direction;float cutOff;float outerCutOff;vec3 ambient;vec3 diffuse;vec3 specular;float constant;float linear;float quadratic;
};in vec3 FragPos;  
in vec3 Normal;  
in vec2 TexCoords;uniform vec3 viewPos;
uniform Material material;
uniform Light light;void main()
{vec3 lightDir = normalize(light.position - FragPos);// check if lighting is inside the spotlight conefloat theta = dot(lightDir, normalize(-light.direction)); if(theta > light.cutOff) // remember that we're working with angles as cosines instead of degrees so a '>' is used.{    // ambientvec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;// diffuse vec3 norm = normalize(Normal);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;  // specularvec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);  float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;  // attenuationfloat distance    = length(light.position - FragPos);float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));    // ambient  *= attenuation; // remove attenuation from ambient, as otherwise at large distances the light would be darker inside than outside the spotlight due the ambient term in the else branchdiffuse   *= attenuation;specular *= attenuation;   vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);}else {// else, use ambient light so scene isn't completely dark outside the spotlight.FragColor = vec4(light.ambient * texture(material.diffuse, TexCoords).rgb, 1.0);}
} 

没截进来的图里包含一个问题就是:为什么我们的theta比内切角大反而被判断在聚光里?因为其实这两个变量的本质是两个角度的余弦值,对于余弦函数,在九十度以内(你的内切角的范围只会在零到九十度),你的角度越小你的余弦值越大。

多光源

我们来将之前所有涉及到的内容,包括多种投光物,材质,光照贴图结合在一起,构建一个多光源场景。

我们来看看具体的代码里多了哪些东西,还是看我们的片元着色器:

#version 330 core
out vec4 FragColor;struct Material {sampler2D diffuse;sampler2D specular;float shininess;
}; struct DirLight {vec3 direction;vec3 ambient;vec3 diffuse;vec3 specular;
};struct PointLight {vec3 position;float constant;float linear;float quadratic;vec3 ambient;vec3 diffuse;vec3 specular;
};struct SpotLight {vec3 position;vec3 direction;float cutOff;float outerCutOff;float constant;float linear;float quadratic;vec3 ambient;vec3 diffuse;vec3 specular;       
};#define NR_POINT_LIGHTS 4in vec3 FragPos;
in vec3 Normal;
in vec2 TexCoords;uniform vec3 viewPos;
uniform DirLight dirLight;
uniform PointLight pointLights[NR_POINT_LIGHTS];
uniform SpotLight spotLight;
uniform Material material;// function prototypes
vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir);
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir);
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir);void main()
{    // propertiesvec3 norm = normalize(Normal);vec3 viewDir = normalize(viewPos - FragPos);// == =====================================================// Our lighting is set up in 3 phases: directional, point lights and an optional flashlight// For each phase, a calculate function is defined that calculates the corresponding color// per lamp. In the main() function we take all the calculated colors and sum them up for// this fragment's final color.// == =====================================================// phase 1: directional lightingvec3 result = CalcDirLight(dirLight, norm, viewDir);// phase 2: point lightsfor(int i = 0; i < NR_POINT_LIGHTS; i++)result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);    // phase 3: spot lightresult += CalcSpotLight(spotLight, norm, FragPos, viewDir);    FragColor = vec4(result, 1.0);
}// calculates the color when using a directional light.
vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir)
{vec3 lightDir = normalize(-light.direction);// diffuse shadingfloat diff = max(dot(normal, lightDir), 0.0);// specular shadingvec3 reflectDir = reflect(-lightDir, normal);float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);// combine resultsvec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));return (ambient + diffuse + specular);
}// calculates the color when using a point light.
vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{vec3 lightDir = normalize(light.position - fragPos);// diffuse shadingfloat diff = max(dot(normal, lightDir), 0.0);// specular shadingvec3 reflectDir = reflect(-lightDir, normal);float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);// attenuationfloat distance = length(light.position - fragPos);float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));    // combine resultsvec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));ambient *= attenuation;diffuse *= attenuation;specular *= attenuation;return (ambient + diffuse + specular);
}// calculates the color when using a spot light.
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{vec3 lightDir = normalize(light.position - fragPos);// diffuse shadingfloat diff = max(dot(normal, lightDir), 0.0);// specular shadingvec3 reflectDir = reflect(-lightDir, normal);float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);// attenuationfloat distance = length(light.position - fragPos);float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));    // spotlight intensityfloat theta = dot(lightDir, normalize(-light.direction)); float epsilon = light.cutOff - light.outerCutOff;float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);// combine resultsvec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));ambient *= attenuation * intensity;diffuse *= attenuation * intensity;specular *= attenuation * intensity;return (ambient + diffuse + specular);
}

我们在片元着色器中定义好平行光、点光、聚光三种光,然后定义材质,注意在代码中通过宏定义将光源数量替换成4且不可更改。然后是三种光照的计算方法,也全部在片元着色器中定义好。

效果如下:


http://www.ppmy.cn/ops/166102.html

相关文章

(七)Spring Boot学习——Redis使用

有部分内容是常用的&#xff0c;为了避免每次都查询数据库&#xff0c;将部分数据存入Redis。 一、 下载并安装 Redis Windows 版的 Redis 官方已不再维护&#xff0c;你可以使用 微软提供的 Redis for Windows 版本 或者 使用 WSL&#xff08;Windows Subsystem for Linux&a…

四元数 实部 虚部顺序,不同仿真器

一些库将四元数表示为 &#xff08;w,x,y,z&#xff09;&#xff0c;将实部定位为第一个元素。 而其他的一些库则将其 表示为 &#xff08;x,y,z, w&#xff09;。 QuaternionConventionSimulator/LibrarywxyzMuJoCo, SAPIEN, CoppeliaSim, IsaacSim, Gazebo, Blender, Taichi…

【Go每日一练】实现简单的控制台计算器

&#x1f47b;创作者&#xff1a;丶重明 &#x1f47b;创作时间&#xff1a;2025年3月7日 &#x1f47b;擅长领域&#xff1a;运维 目录 1.&#x1f636;‍&#x1f32b;️题目&#xff1a;简单的控制台计算器2.&#x1f636;‍&#x1f32b;️代码输出3.&#x1f636;‍&#…

Java高频面试之集合-10

hello啊&#xff0c;各位观众姥爷们&#xff01;&#xff01;&#xff01;本baby今天来报道了&#xff01;哈哈哈哈哈嗝&#x1f436; 面试官&#xff1a;详解红黑树&#xff1f;HashMap为什么不用二叉树/平衡树呢&#xff1f; 一、红黑树&#xff08;Red-Black Tree&#xff…

258.反转字符串中的单词

方法一&#xff1a; public class Solution {public String reverseWords(String s) {if(s.length()1&&!s.equals(" ")){return s;}List<String> resnew ArrayList<>();int start0;for(int i1;i<s.length();i){if(s.charAt(i)! && s…

MySQL中的B+树索引经验总结

一、什么是B树 B树是一种二叉树&#xff0c;由二叉查找树&#xff0c;平衡二叉树&#xff0c;B树演化而来。 请看上图 B树的特点&#xff1a; 1&#xff09;非叶子节点不存放数据&#xff0c;只存放键值&#xff0c;数据都存放在叶子节点中。 2&#xff09;叶子节点都在同一…

奇墨科技FinOps云成本优化:精细化IT成本分摊重塑企业云财务管理

云时代下的IT成本困境&#xff1a;为什么需要精细化IT成本分摊&#xff1f; 根据Flexera《2023云状态报告》&#xff0c;82%的企业存在云资源浪费问题&#xff0c;平均超支比例达32%。与此同时&#xff0c;Gartner预测到2026年&#xff0c;75%的企业将因缺乏有效的成本治理机制…

解决Docker Desktop中ext4.vhdx文件过大的问题

ext4.vhdx是Docker Desktop在Windows系统上使用WSL2&#xff08;Windows Subsystem for Linux 2&#xff09;时&#xff0c;用于存储Linux文件系统的虚拟硬盘文件。 基本概念 VHDX格式&#xff1a;VHDX是微软推出的一种虚拟硬盘格式&#xff0c;具有更大的存储容量、更好的性能…