深度学习实验

ops/2025/3/13 23:34:58/

实验一 numpy创建全连接神经网络

import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, datasets, optimizersos.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"# 准备数据
def mnist_dataset():(x, y), (x_test, y_test) = datasets.mnist.load_data()x = x / 255.0x_test = x_test / 255.0return (x, y), (x_test, y_test)# 定义矩阵乘法类
class Matmul():def __init__(self):self.mem = {}def forward(self, x, W):h = np.matmul(x, W)self.mem = {"x": x, "W": W}return hdef backward(self, grad_y):x = self.mem["x"]W = self.mem["W"]grad_x = np.matmul(grad_y, W.T)grad_W = np.matmul(x.T, grad_y)return grad_x, grad_W# 定义Relu类
class Relu():def __init__(self):self.mem = {}def forward(self, x):self.mem["x"] = xreturn np.where(x > 0, x, np.zeros_like(x))def backward(self, grad_y):x = self.mem["x"]return (x > 0).astype(np.float32) * grad_y# 定义Softmax类
class Softmax():def __init__(self):self.mem = {}self.epsilon = 1e-12def forward(self, x):x_exp = np.exp(x)denominator = np.sum(x_exp, axis=1, keepdims=True)out = x_exp / (denominator + self.epsilon)self.mem["out"] = outself.mem["x_exp"] = x_expreturn outdef backward(self, grad_y):s = self.mem["out"]sisj = np.matmul(np.expand_dims(s, axis=2), np.expand_dims(s, axis=1))g_y_exp = np.expand_dims(grad_y, axis=1)tmp = np.matmul(g_y_exp, sisj)tmp = np.squeeze(tmp, axis=1)softmax_grad = -tmp + grad_y * sreturn softmax_grad# 定义交叉熵类
class Cross_entropy():def __init__(self):self.epsilon = 1e-12self.mem = {}def forward(self, x, labels):log_prob = np.log(x + self.epsilon)out = np.mean(np.sum(-log_prob * labels, axis=1))self.mem["x"] = xreturn outdef backward(self, labels):x = self.mem["x"]return -1 / (x + self.epsilon) * labels# 建立模型
class myModel():def __init__(self):self.W1 = np.random.normal(size=[28*28+1, 100])self.W2 = np.random.normal(size=[100, 10])self.mul_h1 = Matmul()self.relu = Relu()self.mul_h2 = Matmul()self.softmax = Softmax()self.cross_en = Cross_entropy()def forward(self, x, labels):x = x.reshape(-1, 28*28)bias = np.ones(shape=[x.shape[0], 1])x = np.concatenate([x, bias], axis=1)self.h1 = self.mul_h1.forward(x, self.W1)self.h1_relu = self.relu.forward(self.h1)self.h2 = self.mul_h2.forward(self.h1_relu, self.W2)self.h2_soft = self.softmax.forward(self.h2)self.loss = self.cross_en.forward(self.h2_soft, labels)def backward(self, labels):self.loss_grad = self.cross_en.backward(labels)self.h2_soft_grad = self.softmax.backward(self.loss_grad)self.h2_grad, self.W2_grad = self.mul_h2.backward(self.h2_soft_grad)self.h1_relu_grad = self.relu.backward(self.h2_grad)self.h1_grad, self.W1_grad = self.mul_h1.backward(self.h1_relu_grad)# 计算准确率
def compute_accuracy(prob, labels):predictions = np.argmax(prob, axis=1)truth = np.argmax(labels, axis=1)return np.mean(predictions == truth)# 迭代一个epoch
def train_one_step(model, x, y):model.forward(x, y)model.backward(y)model.W1 -= 1e-5 * model.W1_gradmodel.W2 -= 1e-5 * model.W2_gradloss = model.lossaccuracy = compute_accuracy(model.h2_soft, y)return loss, accuracy# 计算测试集上的loss和准确率
def test(model, x, y):model.forward(x, y)loss = model.lossaccuracy = compute_accuracy(model.h2_soft, y)return loss, accuracy# 实际训练
train_data, test_data = mnist_dataset()
train_label = np.zeros(shape=[train_data[0].shape[0], 10])
test_label = np.zeros(shape=[test_data[0].shape[0], 10])
train_label[np.arange(train_data[0].shape[0]), np.array(train_data[1])] = 1
test_label[np.arange(test_data[0].shape[0]), np.array(test_data[1])] = 1model = myModel()for epoch in range(50):loss, accuracy = train_one_step(model, train_data[0], train_label)print(f'epoch {epoch} : loss {loss} ; accuracy {accuracy}')# 测试
loss, accuracy = test(model, test_data[0], test_label)
print(f'test loss {loss} ; accuracy {accuracy}')

实验二 Pytorch 的CNN

pip install torch==1.12.1+cu102 torchvision==0.13.1+cu102 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102

import torch
from torch import nn
import torchvision
from torchvision import datasets, transforms
from tqdm import tqdm# Hyper parameters
BATCH_SIZE = 100
EPOCHS = 10
LEARNING_RATE = 1e-4
KEEP_PROB_RATE = 0.7# Set device to use
device = "cuda:0" if torch.cuda.is_available() else "cpu"# Data transformation
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5], std=[0.5])
])# Download and load dataset
path = './data/'
train_data = datasets.MNIST(path, train=True, transform=transform, download=True)
test_data = datasets.MNIST(path, train=False, transform=transform)# Create DataLoader
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=BATCH_SIZE)# Define the CNN model
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=32, kernel_size=7, padding=3, stride=1),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(in_features=7*7*64, out_features=1024),nn.ReLU(),nn.Dropout(1 - KEEP_PROB_RATE),nn.Linear(in_features=1024, out_features=10),nn.Softmax(dim=1))def forward(self, input):output = self.model(input)return outputnet = Net()
net.to(device)
print(net)# Define loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=net.parameters(), lr=LEARNING_RATE)# Training and testing process
history = {'Test Loss': [], 'Test Accuracy': []}for epoch in range(1, EPOCHS + 1):process_bar = tqdm(train_loader, unit='step')net.train(True)for step, (train_imgs, labels) in enumerate(process_bar):train_imgs = train_imgs.to(device)labels = labels.to(device)# Forward passoutputs = net(train_imgs)loss = loss_fn(outputs, labels)# Backward pass and optimizationnet.zero_grad()loss.backward()optimizer.step()# Compute accuracypredictions = torch.argmax(outputs, dim=1)accuracy = torch.sum(predictions == labels) / labels.shape[0]# Update progress barprocess_bar.set_description(f"[{epoch}/{EPOCHS}] Loss: {loss.item():.4f}, Acc: {accuracy.item():.4f}")# Evaluate on test setnet.train(False)correct = 0total_loss = 0with torch.no_grad():for test_imgs, labels in test_loader:test_imgs = test_imgs.to(device)labels = labels.to(device)outputs = net(test_imgs)loss = loss_fn(outputs, labels)total_loss += losspredictions = torch.argmax(outputs, dim=1)correct += torch.sum(predictions == labels)test_accuracy = correct / (BATCH_SIZE * len(test_loader))test_loss = total_loss / len(test_loader)history['Test Loss'].append(test_loss.item())history['Test Accuracy'].append(test_accuracy.item())process_bar.set_description(f"[{epoch}/{EPOCHS}] Loss: {loss.item():.4f}, Acc: {accuracy.item():.4f}, Test Loss: {test_loss.item():.4f}, Test Acc: {test_accuracy.item():.4f}")process_bar.close()

 


http://www.ppmy.cn/ops/165537.html

相关文章

HTML块级元素和内联元素(简单易懂)

在HTML中,元素可以分为块级元素(Block-level elements)和内联元素(Inline elements)。这两类元素在页面布局和样式应用上有不同的特点和用途。 一、块级元素(Block-level elements) 1. 定义 …

MySQL配置文件my.cnf和mysql.cnf、mysqld.cnf的区别

本文基于系统Ubuntu16.0.4和MySQL5.7.33。 配置过MySQL的都知道,MySQL有很多配置文件。比如my.cnf、mysql.cnf、mysqld.cnf等等。其中,my.cnf是mysql的全局默认设置。而mysql.cnf则是Ubuntu系统所特定的MySQL配置。 这些配置文件都对应于 MySQL 的各个部…

Pac-Man(吃豆人) 游戏

目录 前言 1. Pygame游戏开发基础 1.1 Pygame简介 1.2 游戏开发基本概念 1.3 Pygame核心模块介绍 2. 游戏设计与规划 2.1 游戏规则设计 2.2 游戏对象规划 2.3 技术方案选择 3. 创建游戏窗口与初始化 3.1 初始化Pygame环境 3.2 设置游戏窗口 3.3 定义颜色和游戏参数…

OpenCV连续数字识别—可运行验证

前言 ​ 文章开始,瞎说一点其他的东西,真的是很离谱,找了至少两三个小时,就一个简单的需求: 1、利用OpenCV 在Windows进行抓图 2、利用OpenCV 进行连续数字的检测。 3、使用C,Qt 3、将检测的结果显示出来 …

用户模块——redis工具类

1. Redis工具类与基础配置 1.1 什么是Redis,为什么使用它? Redis(Remote Dictionary Server)是一个开源的高性能键值对存储数据库,通常用于缓存数据、存储会话信息等场景。它的主要优点是速度快,支持多种数…

Docker构建启动jar包

Docker构建启动jar包 1、首先是把java服务打包成jar包 mvn clean install -Dmaven.skip.testtrue package -Pprod这个命令的意思是,跳过测试,打包prod环境。 2、编写Dockerfile文件 # 拉取jdk8作为基础镜像 FROM registry.supos.ai/library/openjdk:…

Docker 数据持久化核心:挂载(Mounts)与卷(Volumes)的区别与选择指南

Docker 容器默认是无状态的 —— 这意味着容器停止后,其内部生成的数据也会随之消失。为了持久化保存数据或在容器间共享数据,Docker 提供了两种主要机制:挂载(Mounts)和卷(Volumes)。理解它们的…

UI自动化:poium测试库

以下是关于 poium 测试库 的详细介绍,涵盖其核心功能、使用方法及与原生 Selenium 的对比,帮助快速掌握这一工具: 1. poium 简介 定位:基于 Selenium 的 Page Object 模式增强库,专注于简化元素定位和页面操作。 核心…