OpenCV连续数字识别—可运行验证

ops/2025/3/13 22:54:07/

前言

​ 文章开始,瞎说一点其他的东西,真的是很离谱,找了至少两三个小时,就一个简单的需求:

1、利用OpenCV 在Windows进行抓图

2、利用OpenCV 进行连续数字的检测。

3、使用C++,Qt

3、将检测的结果显示出来

​ 就这么简单的需求,结果网上找了各种版本硬是找不到,要是代码可能没啥问题,但是运行不了,你这运行不了,我怎么知道你到底能不能用,我代码调半天能用了,结果你跟我说最后效果不好,为啥呢?

​ 因为图像识别这种东西,很取决于你的外部环境的,一定你的外部环境变量,你的数字的背景啥的变了,那么你的代码肯定就要做相应的调整,这种不像深度学习能够自己学习的,实际只能靠你自己一步一步的去调试验证效果怎么样,最终得到适合你的。

​ 所以,我下面会给出我这个程序的打包的可直接验证效果的版本,你如果不是一个想调代码的人,或是你不是一个有耐心的人,或者你跟我的识别环境不一致, 那么我估计我的代码你也用不了,也不必去下载了。可继续找下一个了。

​ 但如果你说,只要我代码能让你运行起来,那么你就能够花精力把它调出来,实在不行,你让AI 帮你把它调出来,这都是没问题的,因为目前的运行方式很简单,只要你确保环境跟我一致,基本就没啥问题。

环境:

Windows 10

Qt 12.8 MSVC2015

OpenCV 4.5.5(我带的这个opencv 是用VS2015编译出来的,如果没有MSVC2015 ,那么就只能靠你自己去下载一个MinGW 之类的,或是你自己对应版本的OpenCV了)

运行现象:
在这里插入图片描述

因为这个是采用那个SVM首先进行模型训练的,我的模型,每个数字只放了一张或是两张,训练量太小了,出来的效果就比较不好,而且,若要进行这个识别,肯定要注意以下几点:

1、摄像头与数字的距离一定是固定的,然后外部光源也是固定的,不能说一会亮一会不亮的,这是不合理的。

2、需要拍摄更多组的照片以及数字来进行训练,甚至该模型可以采用自训练的方式,来进行优化,但我这个版本就没有做到这个点了,这个点有需要的可以来进行优化。后面对这个方面如果我有进行优化,我会来跟贴的。

3、可以对捕抓到的数字再进行一些处理,增大SVM训练的量,这样可能效果就会稳定很多了,我上面这个摄像头是手拿着的,所以会一直飘,我觉得应该也是比较正常的,毕竟只用了一天时间,搞出了这个demo,那效果肯定会有差强人意的地方。

可运行程序

通过网盘分享的文件:NumberRecognitionTool.zip
链接: https://pan.baidu.com/s/1hr8VqU2x17pIQ561hy8nQw?pwd=1111 提取码: 1111

我有试了一下,是可以运行的,如果不能运行可以留言下,我看下是什么原因。

如下,我会把我的核心代码给贴上去,如果有环境的,直接改一改运行就可以了。如果还觉得有点懒的话,可以直接下载我上传的资源文件,那里面我会把dll,啥的,都给你打包好,直接运行即可。不过要花费点积分就是了,如果又没有积分的话,可以加我qq,或者私信我,我可以直接发你。qq在主页有。

https://download.csdn.net/download/qq_43211060/90468759?spm=1001.2014.3001.5501

我也下载了好一些往上的资源,我也不知道有没有用,反正我没用上,如果有需要的话,也可以一起发给你们。希望能对你们有帮助。

正文

一、代码

处理的核心代码:

void CDataRecognitionMgr::InitSVM()
{srand((unsigned)time(0)); // 设置随机数种子// 定义数字图像尺寸:30x50digitWidth = 30;digitHeight = 50;hog = cv::HOGDescriptor(cv::Size(digitWidth, digitHeight), // winSizecv::Size(10, 10),                  // blockSizecv::Size(5, 5),                    // blockStridecv::Size(5, 5),                    // cellSize9                              // nbins);descriptorSize = (int)hog.getDescriptorSize();// ==========================// 1. 从外部加载模板图像,并生成数据增强后的训练样本// ==========================vector<Mat> trainImages;vector<int> trainLabels;const int numAugmentations = 100; // 每个数字至少生成 100 个训练样本for (int digit = 0; digit < 10; digit++) {// 模板图像存放在指定目录下(根据需要调整路径与图片格式)string folderPattern = "./img/Mod/" + to_string(digit) + "/*.png";vector<String> files;glob(folderPattern, files, false);if (files.empty()) {cout << "未找到数字 " << digit << " 的模板图片,请检查文件夹: " << folderPattern << endl;continue;}// 生成数据增强样本for (int i = 0; i < numAugmentations; i++) {// 随机选择一个模板图片int idx = rand() % files.size();Mat img = imread(files[idx], IMREAD_GRAYSCALE);if (img.empty()) {cout << "加载图片失败: " << files[idx] << endl;continue;}// 对模板图像进行增强处理Mat augImg = augmentImage(img, digitWidth, digitHeight);trainImages.push_back(augImg);trainLabels.push_back(digit);}}int totalSamples = (int)trainImages.size();if (totalSamples == 0) {cout << "未生成任何训练样本,请检查模板图像路径与数据增强处理!" << endl;return;}cout << "生成的训练样本总数: " << totalSamples << endl;// ==========================// 2. 构造训练数据矩阵// ==========================Mat trainingFeatures(totalSamples, descriptorSize, CV_32F);Mat trainingLabelsMat(totalSamples, 1, CV_32S);for (int i = 0; i < totalSamples; i++) {vector<float> descriptors;hog.compute(trainImages[i], descriptors);for (int j = 0; j < descriptorSize; j++) {trainingFeatures.at<float>(i, j) = descriptors[j];}trainingLabelsMat.at<int>(i, 0) = trainLabels[i];}// ==========================// 3. 使用 SVM(RBF 核)训练分类器// ==========================svm = SVM::create();svm->setType(SVM::C_SVC);svm->setKernel(SVM::RBF);svm->setC(2.0);svm->setGamma(0.005);svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 1000, 1e-6));cout << "开始训练 SVM..." << endl;svm->train(trainingFeatures, ml::ROW_SAMPLE, trainingLabelsMat);cout << "SVM 训练完成。" << endl;
}void CDataRecognitionMgr::HandlerImage(const QImage &_oImg)
{
#if 1Mat mat = _ImageToMat(_oImg);Mat matGray;cvtColor(mat, matGray, COLOR_BGR2GRAY);Mat testImgThresh;threshold(matGray, testImgThresh, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
//    imshow("testImgThresh",testImgThresh);Mat struct1;struct1=getStructuringElement(0,Size(2,2));//矩形结构元素Mat erodeSrc;//存放腐蚀后的图像erode(testImgThresh, erodeSrc,struct1);Mat morphKernel = getStructuringElement(MORPH_RECT, Size(3, 3));morphologyEx(erodeSrc, testImgThresh, MORPH_OPEN, morphKernel);morphologyEx(erodeSrc, testImgThresh, MORPH_CLOSE, morphKernel);vector<vector<Point>> contours;vector<Vec4i> hierarchy;findContours(testImgThresh, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);qDebug() << "---> contours:"<<contours.size();if (contours.size() < 10){return;}vector<Rect> digitROIs;for (const auto& contour : contours) {Rect bbox = boundingRect(contour);// 根据尺寸过滤噪声与无效区域qDebug() << "---> bbox.width:"<<bbox.width<<";bbox.height:"<<bbox.height;if (bbox.width > 20 && bbox.height > 20 && bbox.width < 200 && bbox.height < 200) {digitROIs.push_back(bbox);}}// 3. 分割粘连区域int avgWidth = 90; // 假设单个数字的平均宽度,可根据实际情况调整for (size_t i = 0; i < digitROIs.size(); i++) {if (digitROIs[i].width > 1.5 * avgWidth) { // 判断是否为粘连区域// 提取粘连区域的二值图像Mat roiImg = testImgThresh(digitROIs[i]);// 计算垂直投影Mat projection(1, roiImg.cols, CV_32F);reduce(roiImg, projection, 0, REDUCE_SUM, CV_32F);// 寻找分割点(局部最小值)int splitPos = -1;float minVal = numeric_limits<float>::max();for (int j = 1; j < projection.cols - 1; j++) {float val = projection.at<float>(0, j);if (val < projection.at<float>(0, j - 1) && val < projection.at<float>(0, j + 1) && val < minVal) {minVal = val;splitPos = j;}}// 根据分割点分割边界框if (splitPos > 0) {Rect leftROI(digitROIs[i].x, digitROIs[i].y, splitPos, digitROIs[i].height);Rect rightROI(digitROIs[i].x + splitPos, digitROIs[i].y, digitROIs[i].width - splitPos, digitROIs[i].height);// 替换原始粘连区域digitROIs.erase(digitROIs.begin() + i);digitROIs.insert(digitROIs.begin() + i, leftROI);digitROIs.insert(digitROIs.begin() + i + 1, rightROI);i--; // 重新检查新插入的区域}}}// 按 x 坐标排序(从左到右)sort(digitROIs.begin(), digitROIs.end(), [](const Rect& a, const Rect& b) {return a.x < b.x;});cout << "检测到的轮廓数量: " << digitROIs.size() << endl;for (const auto& roi : digitROIs) {cout << "边界框: " << roi << endl;}string recognized = "";for (const auto& roi : digitROIs) {Mat digitROI = testImgThresh(roi);Mat digitResized;resize(digitROI, digitResized, Size(digitWidth, digitHeight));vector<float> descriptors;hog.compute(digitResized, descriptors);Mat sample(1, descriptorSize, CV_32F);for (int j = 0; j < descriptorSize; j++) {sample.at<float>(0, j) = descriptors[j];}int predicted = (int)svm->predict(sample);recognized.push_back('0' + predicted);}QString str = QString::fromStdString(recognized);emit SIGNAL_DATA_NUM(str);cout << "识别结果1: " << recognized << endl;
#endif
}

InitSVM基本就是训练的标准流程了,那么比较核心的还是下面这个函数,这个函数HandlerImage可能就需要你进行一些调整:
首先先进行基本的图像处理,由于某些打印的会出现说数字粘在一起的情况,那么就得采用这个分割粘连区域进行局部处理,才能分割出来,我这份代码试了两种情况,都还可以,一个是会粘着的,一个是不会粘着的。

其他你需要更详细的,可以将这两个函数放到AI中帮忙解释一下就可以了。

接下来,就到了我们的经典环节:
在这里插入图片描述

在这里插入图片描述

参考

1、opencv 数字识别 数码管


http://www.ppmy.cn/ops/165533.html

相关文章

用户模块——redis工具类

1. Redis工具类与基础配置 1.1 什么是Redis&#xff0c;为什么使用它&#xff1f; Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的高性能键值对存储数据库&#xff0c;通常用于缓存数据、存储会话信息等场景。它的主要优点是速度快&#xff0c;支持多种数…

Docker构建启动jar包

Docker构建启动jar包 1、首先是把java服务打包成jar包 mvn clean install -Dmaven.skip.testtrue package -Pprod这个命令的意思是&#xff0c;跳过测试&#xff0c;打包prod环境。 2、编写Dockerfile文件 # 拉取jdk8作为基础镜像 FROM registry.supos.ai/library/openjdk:…

Docker 数据持久化核心:挂载(Mounts)与卷(Volumes)的区别与选择指南

Docker 容器默认是无状态的 —— 这意味着容器停止后&#xff0c;其内部生成的数据也会随之消失。为了持久化保存数据或在容器间共享数据&#xff0c;Docker 提供了两种主要机制&#xff1a;挂载&#xff08;Mounts&#xff09;和卷&#xff08;Volumes&#xff09;。理解它们的…

UI自动化:poium测试库

以下是关于 poium 测试库 的详细介绍&#xff0c;涵盖其核心功能、使用方法及与原生 Selenium 的对比&#xff0c;帮助快速掌握这一工具&#xff1a; 1. poium 简介 定位&#xff1a;基于 Selenium 的 Page Object 模式增强库&#xff0c;专注于简化元素定位和页面操作。 核心…

Spring Cloud Alibaba 实战:Sentinel 保障微服务的高可用性与流量防护

1.1 Sentinel 作用 Sentinel 是阿里巴巴开源的一款 流量控制和熔断降级 框架&#xff0c;主要用于&#xff1a; 流量控制&#xff1a;限制 QPS&#xff0c;防止流量暴增导致系统崩溃熔断降级&#xff1a;当某个服务不可用时自动降级&#xff0c;避免故障扩散热点参数限流&…

超越限制:大模型token管理与优化实践

前言 在大型语言模型&#xff08;LLM&#xff09;的应用中&#xff0c;token数量的管理是一个核心挑战。无论是模型的输入限制、计算资源的分配&#xff0c;还是成本的控制&#xff0c;token计数都至关重要。然而&#xff0c;当调用超过预期范围时&#xff0c;我们该如何应对&…

C盘清理技巧分享:释放空间,提升电脑性能

目录 1. 引言 2. C盘空间不足的影响 3. C盘清理的必要性 4. C盘清理的具体技巧 4.1 删除临时文件 4.2 清理系统还原点 4.3 卸载不必要的程序 4.4 清理下载文件夹 4.5 移动大文件到其他盘 4.6 清理系统缓存 4.7 使用磁盘清理工具 4.8 清理Windows更新文件 4.9 禁用…

IEC61850标准下MMS 缓存报告控制块 ResvTms详细解析

IEC61850标准是电力系统自动化领域唯一的全球通用标准。IEC61850通过标准的实现&#xff0c;使得智能变电站的工程实施变得规范、统一和透明&#xff0c;这大大提高了变电站自动化系统的技术水平和安全稳定运行水平。 在 IEC61850 标准体系中&#xff0c;ResvTms&#xff08;r…