Python爬虫实战:从零到一构建数据采集系统

ops/2025/2/23 0:28:44/

文章目录

    • 前言
    • 一、准备工作
      • 1.1 环境配置
      • 1.2 选择目标网站
    • 二、爬虫实现步骤
      • 2.1 获取网页内容
      • 2.2 解析HTML
      • 2.3 数据保存
    • 三、完整代码示例
    • 四、优化与扩展
      • 4.1 反爬应对策略
      • 4.2 动态页面处理
      • 4.3 数据可视化扩展
    • 五、注意事项
    • 六、总结
    • 互动环节

前言

在大数据时代,数据采集是开发者的必备技能之一,而Python凭借其简洁的语法和丰富的库(如requestsBeautifulSoup)成为爬虫开发的首选语言。本文将从零开始,带你一步步构建一个简单的网页数据采集系统,爬取目标网站的数据并保存为CSV文件。无论是新手还是有经验的开发者,都能从中收获实用技巧。欢迎在评论区分享你的爬虫经验!


一、准备工作

1.1 环境配置

确保已安装Python 3.x,并准备以下库:

pip install requests beautifulsoup4 pandas

1.2 选择目标网站

本文以爬取「博客园」(https://www.cnblogs.com)热门文章标题和链接为例。注意:爬虫需遵守目标网站的robots.txt协议,避免违反法律或道德规范。


二、爬虫实现步骤

2.1 获取网页内容

使用requests发送GET请求,获取目标网页的HTML源码:

python">import requestsurl = "https://www.cnblogs.com"
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}response = requests.get(url, headers=headers)
if response.status_code == 200:print("页面获取成功!")
else:print(f"请求失败,状态码:{response.status_code}")

Tips:添加User-Agent模拟浏览器请求,避免被网站屏蔽。


2.2 解析HTML

使用BeautifulSoup提取热门文章的标题和链接:

python">from bs4 import BeautifulSoupsoup = BeautifulSoup(response.text, "html.parser")
# 定位文章列表区域(根据博客园HTML结构)
articles = soup.select(".post-item .post-item-title a")data = []
for article in articles:title = article.text.strip()link = article["href"]data.append({"title": title, "link": link})

解析说明

  • .post-item-title a是博客园热门文章的CSS选择器,可通过浏览器开发者工具(F12)查看具体结构
  • 若目标网站结构不同,可调整选择器

2.3 数据保存

将爬取结果保存为CSV文件:

python">import pandas as pddf = pd.DataFrame(data)
df.to_csv("cnblogs_hot_articles.csv", index=False, encoding="utf-8-sig")
print("数据已保存至cnblogs_hot_articles.csv")

三、完整代码示例

python">import requests
from bs4 import BeautifulSoup
import pandas as pd# 发送请求
url = "https://www.cnblogs.com"
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
response = requests.get(url, headers=headers)if response.status_code == 200:# 解析HTMLsoup = BeautifulSoup(response.text, "html.parser")articles = soup.select(".post-item .post-item-title a")data = []for article in articles:title = article.text.strip()link = article["href"]data.append({"title": title, "link": link})# 保存数据df = pd.DataFrame(data)df.to_csv("cnblogs_hot_articles.csv", index=False, encoding="utf-8-sig")print("数据已保存至cnblogs_hot_articles.csv")
else:print(f"请求失败,状态码:{response.status_code}")

四、优化与扩展

4.1 反爬应对策略

  • 随机延时:使用time.sleep(random.uniform(1, 3))避免频繁请求
  • 代理IP:引入代理池(如requestsproxies参数)

4.2 动态页面处理

对于JavaScript渲染的页面,可使用:

  • selenium模拟浏览器操作
  • playwright支持多浏览器自动测试

4.3 数据可视化扩展

python">from collections import Counter
import matplotlib.pyplot as pltwords = " ".join(df["title"]).split()
word_freq = Counter(words).most_common(10)
plt.bar([w[0] for w in word_freq], [w[1] for w in word_freq])
plt.show()

五、注意事项

  1. 法律合规:严格遵循robots.txt协议
  2. 性能优化:大规模爬取时建议使用多线程/异步库(如asyncio
  3. 异常处理:添加完善的try-except机制

六、总结

通过本文实践,我们掌握了从网页请求到数据存储的完整爬虫开发流程。建议后续尝试:

  • 爬取电商商品数据(如京东/淘宝)
  • 构建分布式爬虫系统
  • 结合机器学习进行数据分析

互动环节

  1. 你在项目中用过哪些Python爬虫库?有什么推荐?
  2. 遇到过最有趣的爬虫挑战是什么?
  3. 分享你的第一个爬虫项目经历!


http://www.ppmy.cn/ops/160635.html

相关文章

使用html css js 来实现一个服装行业的企业站源码-静态网站模板

最近在练习 前端基础,html css 和js 为了加强 代码的 熟悉程序,就使用 前端 写了一个个服装行业的企业站。把使用的技术 和 页面效果分享给大家。 应用场景 该制衣服装工厂官网前端静态网站模板主要用于前端练习和编程练习,适合初学者进行 HT…

Rust中的Trait与Trait Bounds

在这篇文章中,我们将通过《西游记》的故事背景来理解 Rust 中的_trait_(特征)和_trait bounds_(特征边界)。让我们以唐僧和他的徒弟们为例,看看如何用 Rust 的特性来描述他们的能力和限制。 章节一&#xf…

仿 Sora 之形,借物理模拟之技绘视频之彩

来自麻省理工学院、斯坦福大学、哥伦比亚大学以及康奈尔大学的研究人员携手开源了一款创新的3D交互视频模型——PhysDreamer(以下简称“PD”)。PD与OpenAI旗下的Sora相似,能够借助物理模拟技术来生成视频,这意味着PD所生成的视频蕴…

agent和android怎么结合:健康助手,旅游助手,学习助手

agent和android怎么结合:健康助手,旅游助手,学习助手 创新点 智能交互创新:提出全新的agent - Android交互模式,如基于手势、语音、眼动等多模态融合的交互方式。例如让agent能够同时理解用户的语音指令和手势动作,在Android设备上提供更加自然和高效的交互体验,比如在…

蓝桥杯(B组)-每日一题(1093字符逆序)

c中函数&#xff1a; reverse(首位置&#xff0c;尾位置&#xff09; reverse(s.begin(),s.end()) 头文件&#xff1a;<algorithm> #include<iostream> #include<algorithm>//运用reverse函数的头文件 using namespace std; int main() {string s;//定义一…

Brave132编译指南 MacOS篇 - 编译与运行(六)

1. 引言 经过前几篇文章的精心准备&#xff0c;我们已经成功初始化了Brave132浏览器的构建环境&#xff0c;现在&#xff0c;我们终于来到了激动人心的时刻&#xff1a;编译并运行Brave浏览器。本篇将详细介绍如何将之前准备好的源代码和依赖项转化为一个可以实际运行的Brave浏…

C#上位机--选择语句(switch)

在 C# 上位机开发的广阔领域中&#xff0c;流程控制语句如同程序的 “交通枢纽”&#xff0c;精准地引导着程序的执行路径。继深入探讨if语句后&#xff0c;我们将目光聚焦于另一个重要的流程控制语句 ——switch语句。switch语句以其独特的多路分支结构&#xff0c;为处理多条…

Spark(2)linux和简单命令

&#xff08;一&#xff09;Linux的文件系统 文件系统&#xff1a;操作系统中负责管理和存储文件信息的软件结构称为文件管理系统。 文件系统的结构通常叫做目录树结构&#xff0c;从斜杆/根目录开始; Linux号称万物皆文件&#xff0c;意味着针对Linux的操作&#xff0c;大多…