嵌入式经常用到串口,如何判断串口数据接收完成?

ops/2025/2/21 6:18:04/

说起通信,首先想到的肯定是串口,日常中232和485的使用比比皆是,数据的发送、接收是串口通信最基础的内容。这篇文章主要讨论串口接收数据的断帧操作。
空闲中断断帧
一些mcu(如:stm32f103)在出厂时就已经在串口中封装好了一种中断——空闲帧中断,用户可以通过获取该中断标志位来判断数据是否接收完成,中断标志在中断服务函数中获取,使用起来相对简单。
在这里插入图片描述
例程中,当接收完成标志 Lora_RecvData.Rx_over 为1时,就可以获取 uart4 接收到的一帧数据,该数据存放在 Lora_RecvData.RxBuf 中。
超时断帧
空闲帧中断的使用固然方便,但是并不是每个mcu都有这种中断存在(只有个别高端mcu才有),那么这个时候就可以考虑使用超时断帧了。

Modbus协议中规定一帧数据的结束标志为3.5个字符时长,那么同样的可以把这种断帧方式类比到串口的接收上,这种方法需要搭配定时器使用。

其作用原理就是:串口进一次接收中断,就打开定时器超时中断,同时装载值清零(具体的装载值可以自行定义),只要触发了定时器的超时中断,说明在用户规定的时间间隔内串口接收中断里没有新的数据进来,可以认为数据接收完成。
uint16_t Time3_CntValue = 0;//计数器初值

/*******************************************************************************

  • TIM3中断服务函数
    ******************************************************************************/
    void Tim3_IRQHandler(void)
    {
    if(TRUE == Tim3_GetIntFlag(Tim3UevIrq))
    {
    Tim3_M0_Stop(); //关闭定时器3
    Uart0_Rec_Count = 0;//接收计数清零
    Uart0_Rec_Flag = 1; //接收完成标志
    Tim3_ClearIntFlag(Tim3UevIrq); //清除定时器中断
    }
    }

void Time3_Init(uint16_t Frame_Spacing)
{
uint16_t u16ArrValue;//自动重载值
uint32_t u32PclkValue;//PCLK频率

stc_tim3_mode0_cfg_t     stcTim3BaseCfg;//结构体初始化清零
DDL_ZERO_STRUCT(stcTim3BaseCfg);Sysctrl_SetPeripheralGate(SysctrlPeripheralTim3, TRUE); //Base Timer外设时钟使能stcTim3BaseCfg.enWorkMode = Tim3WorkMode0;              //定时器模式
stcTim3BaseCfg.enCT       = Tim3Timer;                  //定时器功能,计数时钟为内部PCLK
stcTim3BaseCfg.enPRS      = Tim3PCLKDiv1;               //不分频
stcTim3BaseCfg.enCntMode  = Tim316bitArrMode;           //自动重载16位计数器/定时器
stcTim3BaseCfg.bEnTog     = FALSE;
stcTim3BaseCfg.bEnGate    = FALSE;
stcTim3BaseCfg.enGateP    = Tim3GatePositive;Tim3_Mode0_Init(&stcTim3BaseCfg);             //TIM3 的模式0功能初始化u32PclkValue = Sysctrl_GetPClkFreq();          //获取Pclk的值

//u16ArrValue = 65535-(u32PclkValue/1000); //1ms测试
u16ArrValue = 65536 - (uint16_t)((float)(Frame_Spacing10)/RS485_BAUDRATEu32PclkValue);//根据帧间隔计算超时时间
Time3_CntValue = u16ArrValue; //计数初值
Tim3_M0_ARRSet(u16ArrValue); //设置重载值
Tim3_M0_Cnt16Set(u16ArrValue); //设置计数初值

Tim3_ClearIntFlag(Tim3UevIrq);            //清中断标志
Tim3_Mode0_EnableIrq();                   //使能TIM3中断(模式0时只有一个中断)
EnableNvic(TIM3_IRQn, IrqLevel3, TRUE);   //TIM3 开中断  

}

/**此处省略串口初始化部分/
//串口0中断服务函数
void Uart0_IRQHandler(void)
{
uint8_t rec_data=0;

if(Uart_GetStatus(M0P_UART0, UartRC))         
{Uart_ClrStatus(M0P_UART0, UartRC);        rec_data = Uart_ReceiveData(M0P_UART0);     if(Uart0_Rec_Count<UART0_BUFF_LENGTH)//帧长度{Uart0_Rec_Buffer[Uart0_Rec_Count++] = rec_data;        }Tim3_M0_Cnt16Set(Time3_CntValue);//设置计数初值 Tim3_M0_Run();   //开启定时器3 超时即认为一帧接收完成
}

}

例程所用的是华大的hc32l130系列mcu,其它类型的mcu也可以参考这种写法。其中超时时间的计算尤其要注意数据类型的问题,u16ArrValue = 65536 - (uint16_t)((float)(Frame_Spacing * 10)/RS485_BAUDRATE * u32PclkValue);其中Frame_Spacing为用户设置的字符个数,uart模式为一个“1+8+1”共10bits。

状态机断帧
状态机,状态机,又是状态机,没办法!谁让它使用起来方便呢?其实这种方法我用的也不多,但是状态机的思想还是要有的,很多逻辑用状态机梳理起来会更加的清晰。

相对于超时断帧,状态机断帧的方法节约了一个定时器资源,一般的mcu外设资源是足够的,但是做一些资源冗余也未尝不是一件好事,万一呢?对吧。
//状态机断帧
void UART_IRQHandler(void) //作为485的接收中断
{
uint8_t count = 0;
unsigned char lRecDat = 0;

if(/*触发接收中断标志*/)  
{//清中断状态位rec_timeout = 5;if((count == 0)) //接收数据头,长度可以自定义{RUart0485_DataC[count++] = /*串口接收到的数据*/;gRecStartFlag = 1;return;}if(gRecStartFlag == 1){RUart0485_DataC[count++] = /*串口接收到的数据*/;if(count > MAXLEN) //一帧数据接收完成{count=0;gRecStartFlag = 0;if(RUart0485_DataC[MAXLEN]==CRC16(RUart0485_DataC,MAXLEN)){memcpy(&gRecFinshData,RUart0485_DataC,13);gRcvFlag = 1; //接收完成标志位                    }}   }return; 
}
return ;

}

这种做法适合用在一直有数据接收的场合,每次接收完一帧有效数据后就把数据放到缓冲区中去解析,同时还不影响下一帧数据的接收。

整个接收状态分为两个状态——接收数据头和接收数据块,如果一帧数据存在多个部分的话还可以在此基础上再增加几种状态,这样不仅可以提高数据接收的实时性,还能够随时看到数据接收到哪一部分,还是比较实用的。
"状态机+FIFO"断帧
如果串口有大量数据要接收,同时又没有空闲帧中断你会怎么做?

没错,就是FIFO(当时并没有回答上来,因为没用过),说白了就是开辟一个缓冲区,每次接收到的数据都放到这个缓冲区里,同时记录数据在缓冲区中的位置,当数据到达要求的长度的时候再把数据取出来,然后放到状态机中去解析。
当然FIFO的使用场合有很多,很多数据处理都可以用FIFO去做,有兴趣的可以多去了解一下。
/**串口初始化省略,华大mcu hc32l130/
void Uart1_IRQHandler(void)
{
uint8_t data;
if(Uart_GetStatus(M0P_UART1, UartRC)) //UART0数据接收
{
Uart_ClrStatus(M0P_UART1, UartRC); //清中断状态位
data = Uart_ReceiveData(M0P_UART1); //接收数据字节
comFIFO(&data,1);
}
}

/FIFO*/
volatile uint8_t fifodata[FIFOLEN],fifoempty,fifofull;
volatile uint8_t uart_datatemp=0;

uint8_t comFIFO(uint8_t *data,uint8_t cmd)
{
static uint8_t rpos=0; //当前写的位置 position 0–99
static uint8_t wpos=0; //当前读的位置

if(cmd==0) //写数据
{if(fifoempty!=0)       //1 表示有数据 不为空,0表示空{*data=fifodata[rpos];fifofull=0;rpos++;if(rpos==FIFOLEN) rpos=0;if(rpos==wpos) fifoempty=0;return 0x01;} elsereturn 0x00;} 
else if(cmd==1) //读数据
{if(fifofull==0){fifodata[wpos]=*data;fifoempty=1;wpos++;if(wpos==FIFOLEN) wpos=0;if(wpos==rpos) fifofull=1;return 0x01;} elsereturn 0x00;
}
return 0x02;

}

/*状态机处理/
void LoopFor485ReadCom(void)
{
uint8_t data;

while(comFIFO(&data,0)==0x01)
{if(rEadFlag==SAVE_HEADER_STATUS) //读取头{if(data==Header_H){buffread[0]=data;continue;}if(data==Header_L){buffread[1]=data;if(buffread[0]==Header_H){rEadFlag=SAVE_DATA_STATUS;}} else{memset(buffread,0,Length_Data);}} else if(rEadFlag==SAVE_DATA_STATUS)  //读取数据{buffread[i485+2]=data;i485++;if(i485==(Length_Data-2)) //数据帧除去头{unsigned short crc16=CRC16_MODBUS(buffread,Length_Data-2);if((buffread[Length_Data-2]==(crc16>>8))&&(buffread[Length_Data-1]==(crc16&0xff))){rEadFlag=SAVE_OVER_STATUS;memcpy(&cmddata,buffread,Length_Data);  //拷贝Length_Struct个字节,完整的结构体} else{rEadFlag=SAVE_HEADER_STATUS;}memset(buffread,0,Length_Data);i485=0;break;}}
}

}


http://www.ppmy.cn/ops/158557.html

相关文章

数据结构(考研)

线性表 顺序表 顺序表的静态分配 //线性表的元素类型为 ElemType//顺序表的静态分配 #define MaxSize10 typedef int ElemType; typedef struct{ElemType data[MaxSize];int length; }SqList;顺序表的动态分配 //顺序表的动态分配 #define InitSize 10 typedef struct{El…

动态规划----------完全背包问题

1. 动态规划思路 完全背包问题和 0-1 背包问题非常相似&#xff0c;区别仅在于不限制物品的选择次数。 在 0-1 背包问题中&#xff0c;每种物品只有一个&#xff0c;因此将物品 i 放入背包后&#xff0c;只i能从前 i−1 个物品中选择。在完全背包问题中&#xff0c;每种物品…

HJ212环境监测数据传输协议

HJ212-2017是中国环境保护部发布的环境监测数据传输协议&#xff0c;主要用于环境监测设备与监控中心之间的数据传输。该协议定义了数据传输的格式、内容、通信方式等&#xff0c;广泛应用于空气质量、水质等环境监测领域。本文将详细介绍HJ212-2017协议的结构&#xff0c;并通…

从零搭建微服务项目(第5章——SpringBoot项目LogBack日志配置+Feign使用)

前言&#xff1a; 本章主要在原有项目上添加了日志配置&#xff0c;对SpringBoot默认的logback的配置进行了自定义修改&#xff0c;并详细阐述了xml文件配置要点&#xff08;只对日志配置感兴趣的小伙伴可选择直接跳到第三节&#xff09;&#xff0c;并使用Feign代替原有RestT…

Reinforcement Learning Heats Up 强化学习持续升温

Reinforcement Learning Heats Up 强化学习持续升温 核心观点&#xff1a;强化学习正成为构建具有高级推理能力大语言模型&#xff08;LLMs&#xff09;的重要途径。 最新进展 模型示例&#xff1a;近期出现了如DeepSeek - R1及其变体&#xff08;DeepSeek - R1 - Zero&#xf…

基于Flask的影视剧热度数据可视化分析系统的设计与实现

【FLask】基于Flask的影视剧热度数据可视化分析系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 随着互联网技术的飞速发展&#xff0c;影视剧行业的数据量呈爆炸性增长&#x…

【生产变更】- 19c ADG failover

【生产变更】- 19c ADG failover 一、概述二、操作步骤2.1 备库停止mrp2.2 备库进行failover2.3 新主库置为open状态2.4 确认新主库数据库角色 一、概述 Failover场景通常在主库突发故障&#xff08;如硬件故障、数据库故障、操作系统故障等&#xff09;&#xff0c;短时间无法…

【嵌入式Linux应用开发基础】opendir函数、readdir函数和closedir函数(二)

目录 一、关键注意事项 1.1. 错误处理 1.2. 资源管理 1.3. 线程安全 1.4. 目录项类型判断 1.5. 递归遍历注意事项 二、常见问题 2.1. opendir函数常见问题 2.2. readdir函数常见问题 2.3. closedir函数常见问题 2.4. 通用注意事项 三、总结 四、参考文献 接https:…