深度学习之“线性代数”

ops/2025/2/6 9:06:49/

线性代数深度学习中是解决多维数学对象计算问题的核心工具。这些数学对象包括标量、向量、矩阵和张量,借助它们可以高效地对数据进行操作和建模。以下将详细介绍这些数学对象及其在深度学习中的典型用途。

数学对象概述

标量

标量是最简单的数学对象,通常表示单个数值变量,是构成高阶数据结构的基础。例如:

python">import numpy as np
x = 42  # 标量
print(x)

向量

向量由标量组成,表示为一维数组。根据表示方式不同,可以分为行向量和列向量。在深度学习中,向量常用于描述样本的多个特征。例如:

python">import numpy as np
x = np.array([1,2,3])
print(x)
print(x.shape)
print(x.reshape((3,1)))

在这里插入图片描述

深度学习和机器学习中,向量的各个成员之间通常用于描述样本不同的特征。模型可以通过输入的这些特征量得到有用的输出,如分类标签或者是回归值。

矩阵

矩阵是由数字构成的二维数组。在矩阵中,各个元素所处的行数和列数为元素的下标。在python语言中,数组的下标是从0开始的,而在matlab语言中,数组的下标从1开始,不同语言的特点不同,需要注意。此外,在矩阵中,元素的位置由行和列索引确定。

python">import numpy as np
A = np.arange(12).reshape((3,4))
print(A)
print(A[1,2])
print(A[0,0])

在这里插入图片描述

此外,我们可以看到除开头可结尾的[]外,每一行的数据都由一组[]包括着,这说明numpy将二维数组当作行向量来对待,其中每一个元素也为一个行向量。

张量

张量是更高维的数组,超越矩阵的二维结构。例如,在计算机视觉中,RGB图像可以表示为形状为chw的三维张量,其中c表示通道数,h和w分别表示图像的高度和宽度。加上批量(batch size)维度后,形成四维张量。然而,不同框架可能对张量的维度顺序有不同约定,例如 ONNX 通常使用hwc。示例代码如下:

python">import numpy as np
t = np.arange(36).reshape(3,3,4)
print(t)

在这里插入图片描述

在计算机视觉模型推理阶段,尽管我们通常输入的是一张三维图片,但模型的输入通常还需要一个最高维度的批量大小(通常默认为1)。那么,如何对输入进行转换,将其扩展为四维数据呢?以下介绍两种方法,通过增加一个大小为1的维度来实现这一转换。

python">t = np.arange(36).reshape(3,3,4)
w = t[np.newaxis,:,:,:]
w2 = np.expand_dims(t,axis=0)
print(w.shape)
print(w2.shape)
print(w)
print(w2)

在这里插入图片描述

代数运算

本节主要设计向量和矩阵的计算

数组运算

标量运算中的加减乘除,以及指数等初等运算都适用于数组运算。当两个运算数组形状相同时,可以简单理解为对应位置上的元素进行运算。

python">import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = np.array([[7,8,9],[10,11,12]])
print(a+b)
print(a-b)
print(a*b)
print(a/b)

在这里插入图片描述

当两个数组形状不匹配时,就会涉及到NumPy的广播机制。举个例子,假设有三个人,第一个人分别拥有1个梨、2个苹果、3个香蕉和4个橘子;第二个人各类水果的数量是第一个人的两倍,第三个人则是第一个人的三倍。我们可以利用NumPy的广播机制,轻松地表示出每个人每种水果的拥有量。

python">import numpy as np
a = np.array([1,2,3,4])
b = np.array([[1],[2],[3]])
print(a*b)

在这里插入图片描述

其中行为4种水果,列为3个人。

向量运算

单位向量

将一个向量中的各个元素除以向量的模长,我们就能得到一个方向不变且模值为1的单位向量。

python">import numpy as np
v = np.array([2,-4,3])
print(v / np.sqrt((v*v).sum()))
print(v / np.sqrt(np.dot(v,v)))

在这里插入图片描述

我们既可以使用各元素平方求和开根号的方式来求得向量的模长,也可以使用内积的方式来得到。

内积

向量内积是最基础的向量运算,其计算方法如下
在这里插入图片描述

在这里插入图片描述

向量内积的结果是一个标量。向量内积满足交换律和分配律,但是不满足结合律。且内积为0的两个向量相互正交,它们之间的夹角为90°。

外积

与向量内积不同,两个向量的外积得到的是一个矩阵。个人理解,可以用前面的广播机制来理解它。向量的外积不要求两个向量具有相同数量的元素

python">a = np.array([1,2,3,4])
b = np.array([5,6,7])
print(np.outer(a,b))

在这里插入图片描述

叉积

叉积是定义在三维空间中的,两个向量叉积的结果是一个新的向量,这个向量垂直于这两个向量构成的平面。新向量的方向服从右手法则。
在这里插入图片描述

python">import numpy as np
a = np.array([1,0,0])
b = np.array([0,1,0])
c = np.array([1,1,0])
print(np.cross(a,b))
print(np.cross(a,c))

在这里插入图片描述

总结

线性代数深度学习的基础,其数学对象和运算在数据表示和模型计算中无处不在。掌握这些基本概念和操作,将为理解和优化深度学习模型提供有力支持。


http://www.ppmy.cn/ops/156112.html

相关文章

算法 哈夫曼树和哈夫曼编码

目录 前言 一,二进制转码 二,哈夫曼编码和哈夫曼树 三,蓝桥杯 16 哈夫曼树 总结 前言 这个文章需要有一定的树的基础,没学过树的伙伴可以去看我博客树的文章 当我们要编码一个字符串转成二进制的时候,我们要怎么…

【回溯+剪枝】电话号码的字母组合 括号生成

文章目录 17. 电话号码的字母组合解题思路:回溯 哈希表22. 括号生成解题思路:回溯 剪枝 17. 电话号码的字母组合 17. 电话号码的字母组合 ​ 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 …

寻路算法:A*算法。

在2D应用场景中,会出现寻找最短路径的情况。可以运用的算法很多,广度优先算法,曼哈顿算法等等。虽然可以最终访问到。但是为了节省性能,推荐使用A*算法。 1.图示 2.基本原理 遍历一个点周围的点。看看那个点的寻路消耗最小。再以…

31.Word:科技论文的译文审交稿【31】

目录 NO1.2.3​ NO4.5.6 NO7.8样式应用和修改&多级列表​ NO9奇偶页页眉 NO10自动编号&交叉引用 NO11.12 NO1.2.3 另存为/F12:考生文件夹只保留译文内容、格式设置、修订批注,删除其他:删除表格的左列→删除第一行将表格转化成…

解锁C/C++:链表数据结构的奇幻之旅

目录 一、引言二、链表基础概念2.1 链表是什么2.2 链表的类型三、C 语言实现链表3.1 定义链表节点3.2 创建链表3.3 链表操作3.3.1 遍历链表3.3.2 插入节点3.3.3 删除节点3.3.4 查找节点3.4 完整示例代码四、C++ 实现链表4.1 定义链表节点类4.2 创建链表4.3 链表操作4.3.1 遍历链…

双亲委派(jvm)

1.双亲委派 在 Java 中,双薪委派通常是指双亲委派模型,它是 Java 类加载器的一种工作模式,用于确保类加载的安全性和一致性。以下是其相关介绍: 定义与作用 定义:双亲委派模型要求除了顶层的启动类加载器外&#xf…

Java常见的技术场景面试题

一、单点登录这块怎么实现的? 单点登录概述 单点登录:Single Sign On(简称SSO),只需要登录一次,就可以访问所有信任的应用系统 在以前的时候,一般我们就单系统,所有的功能都在同一个系统上。…

C#面试常考随笔15:C#的GC原理是什么?

基本概念 托管堆:在 C# 中,对象的内存分配主要发生在托管堆上。当创建一个对象时,CLR 会在托管堆上为其分配一块连续的内存空间。引用计数:引用计数是一种简单的内存管理方法,它通过记录每个对象被引用的次数来判断对象是否可以被回收。当引用计数为 0 时,对象就可以被回…