【python】python油田数据分析与可视化(源码+数据集)【独一无二】

ops/2025/2/6 4:23:33/

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


pythonpython_11">【pythonpython油田数据分析与可视化(源码+数据集)【独一无二】


目录

  • pythonpython油田数据分析与可视化(源码+数据集)【独一无二】
  • 一、设计要求
  • 二、设计思路
      • **油田数据分析与可视化——设计思路**
        • **1. 项目背景**
        • **2. 代码结构分析**
    • **第一步:数据读取**
      • **1.1 读取各油田数据**
    • **第二步:数据预处理**
      • **2.1 转换日期格式**
      • **2.2 计算总产液量**
      • **2.3 计算各井的平均日产液量/注水量**
      • **2.4 合并井位信息**
    • **第三步:数据可视化**
      • **3.1 井位分布散点图**
      • **3.2 产量变化趋势折线图**
      • **3.3 产量对比条形图**
      • **3.4 产量构成饼图**
      • **3.5 单井日产量分布直方图**
    • **第四步:数据导出**


一、设计要求

本项目旨在开发一个 油田数据分析与可视化系统,实现 数据读取、清洗、统计分析、可视化展示数据导出 功能。系统支持读取 产量、井位、注水 数据,进行格式标准化、缺失值处理及衍生变量计算,并通过 井位分布图、趋势折线图、对比条形图、饼图、直方图 展示数据分析结果。同时,支持数据导出为 Excel,提高数据管理和决策效率。采用 Python(pandas、matplotlib、numpy) 开发,优化大规模数据处理,确保计算高效、可视化直观,并具备未来扩展为 Web 平台或 AI 预测系统的潜力。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


二、设计思路

油田数据分析与可视化——设计思路

1. 项目背景

本项目的目标是对油田数据进行清洗、分析,并以可视化方式呈现油井的分布情况、产量变化趋势及统计特征。数据源主要包括不同油田的 产量数据井位数据注水数据,最终通过 Matplotlib 进行可视化展示。

2. 代码结构分析

整个代码可以分为以下几个主要步骤:

  1. 数据读取
  2. 数据预处理
  3. 数据可视化
  4. 数据导出(可选)

在这里插入图片描述

第一步:数据读取

该部分的主要任务是加载不同油田的CSV数据文件,使用 pandas 读取数据集,并存入 DataFrame 进行后续处理。

1.1 读取各油田数据

数据主要分为以下几类:

  • JL油田
    • JL油田-近期产量数据.csv(包含日产油量、日产水量、日产气量)
    • JL油田-井位井别.csv(包含井的坐标、采油井/注水井类别)
    • JL油田-注水数据.csv(包含日注水量)
  • ML油田
    • ML油田-井位井别.csv(井位信息)
    • ML油田-注水数据.csv(仅有注水量,无产油产水数据)
  • WL油田
    • WL油田-近期产量数据.csv
    • WL油田-井位井别.csv
    • WL油田-注水数据.csv

实现方式

python">df_jl_prod = pd.read_csv("JL油田-近期产量数据.csv")  
# 代码略....

第二步:数据预处理

数据预处理的核心目标是确保数据格式一致,填充缺失值,并计算衍生变量。例如:

  1. 转换日期格式
  2. 计算总产液量
  3. 计算各井的平均日产液量/注水量
  4. 合并不同数据表

2.1 转换日期格式

确保 日期 字段是 datetime 格式,以便后续时间序列分析:

python">df_jl_prod['日期'] = pd.to_datetime(df_jl_prod['日期'])
df_jl_inj['日期'] = pd.to_datetime(df_jl_inj['日期'])

2.2 计算总产液量

python">df_jl_prod['产液量'] = df_jl_prod['日产油量'] + df_jl_prod['日产水量']

此计算反映了井的 总液体产出(油 + 水),用于衡量单井或油田的生产能力。

2.3 计算各井的平均日产液量/注水量

对于采油井,计算 平均日产液量

python">jl_prod_group = df_jl_prod.groupby('井名', as_index=False)['产液量'].mean()
jl_prod_group.rename(columns={'产液量': '平均日产液量'}, inplace=True)

对于注水井,计算 平均日注水量

python">jl_inj_group = df_jl_inj.groupby('井名', as_index=False)['日注水量'].mean()
jl_inj_group.rename(columns={'日注水量': '平均日注水量'}, inplace=True)

在这里插入图片描述

2.4 合并井位信息

将井位数据与计算出的 日产液量/注水量 进行合并,确保绘制散点图时每个井的数值信息完整:

python">df_jl_loc['平均日产液量/注水量'] = 0.0
for i in range(len(df_jl_loc)):well = df_jl_loc.loc[i, '井名']cate = df_jl_loc.loc[i, '注采类别:1采油井;0注水井']if cate == 1:  # 代码略....else:  val = jl_inj_group[jl_inj_group['井名'] == well]['平均日注水量']if not val.empty:df_jl_loc.loc[i, '平均日产液量/注水量'] = val.values[0]

第三步:数据可视化

数据可视化分为以下几类:

  1. 井位分布散点图

  2. 产量变化趋势折线图

  3. 产量对比条形图

  4. 产量构成饼图

  5. 单井日产量分布直方图


3.1 井位分布散点图

以散点图展示井的地理位置,颜色区分 采油井/注水井,点的大小表示产量或注水量:

python">plt.scatter(df_jl_loc['X'], df_jl_loc['Y'], s=df_jl_loc['平均日产液量/注水量'] * 50, c=df_jl_loc['注采类别:1采油井;0注水井'], cmap='coolwarm', alpha=0.6)

在这里插入图片描述

3.2 产量变化趋势折线图

绘制 不同油田的日产油、日产水、日产气、日注水量随时间变化

python">plt.plot(jl_daily['日期'], jl_daily['日产油量'], marker='o', label='日产油量')
plt.plot(jl_daily['日期'], jl_daily['日产水量'], marker='s', label='日产水量')
plt.plot(jl_daily['日期'], jl_daily['日产气量'], marker='^', label='日产气量')
plt.plot(jl_daily['日期'], jl_daily['日注水量'], marker='d', label='日注水量')

在这里插入图片描述
在这里插入图片描述

3.3 产量对比条形图

绘制 不同油田的总产量

python">plt.bar(x - 1.5*width, oil_data, width, label='总产油量')
plt.bar(x - 0.5*width, water_data, width, label='总产水量')
plt.bar(x + 0.5*width, gas_data, width, label='总产气量')
plt.bar(x + 1.5*width, inj_data, width, label='总注水量')

在这里插入图片描述

3.4 产量构成饼图

展示 不同油田的产油/产水/产气比例

python">plt.pie(jl_values, labels=jl_labels, autopct='%1.1f%%', startangle=140)

在这里插入图片描述

3.5 单井日产量分布直方图

展示 单井日产油量/日注水量的分布

python">plt.hist(df_jl_prod['日产油量'], bins=10, color='orange', alpha=0.7, edgecolor='black')

在这里插入图片描述


第四步:数据导出

最终结果可保存为 Excel:

python">df_jl_prod.to_excel("油田数据汇总.xlsx", sheet_name="JL产量数据", index=False)

该代码实现了 油田数据分析与可视化,涵盖 数据清洗、统计计算、图表展示,有助于油田生产管理和决策支持。
在这里插入图片描述


http://www.ppmy.cn/ops/156050.html

相关文章

Star300+ 开源项目Developer-RoadMap 计算机各领域学习路线图集大成者

一、开发者的“成长宝典”来了 你是否在编程的海洋中迷茫,不知该驶向何方?你是否渴望一份清晰的指南,引领你在开发者的道路上稳步前行?今天,就为大家带来一份堪称“成长宝典”的开源项目: https://github.com/kamran…

【python】python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 python基于机器学习与数据分析的手机特性关联与分类…

git 新项目

新项目git 新建的项目如何进行git 配置git git config --global user.name "cc" git config --global user.email ccexample.com配置远程仓库路径 // 添加 git remote add origin http://gogs/cc/mc.git //如果配错了,删除 git remote remove origin初…

全面解析机器学习优化算法中的进化策略

全面解析机器学习优化算法中的进化策略 全面解析机器学习优化算法中的进化策略引言什么是进化策略?基本概念核心组件算法流程数学基础高斯扰动期望值更新与其他优化方法的比较梯度下降法(Gradient Descent, GD)遗传算法(Genetic Algorithm, GA)Python案例基本实现改进版:…

【异常记录Java-20250204】调用讯飞星火AI(Spark lite 版本)Api 授权错误问题处理

问题重现 依赖 <!--讯飞开放平台sdk--> <dependency><groupId>io.github.briqt</groupId><artifactId>xunfei-spark4j</artifactId><version>1.3.0</version> </dependency>yml配置文件 # 讯飞Api配置 xunfei:client:ap…

计算机网络笔记再战——理解几个经典的协议1

目录 前言 从协议是什么出发 关于TCP/IP协议体系 几个传输方式的分类 地址 网卡 中继器&#xff08;Repeater&#xff09; 网桥&#xff08;Bridge&#xff09; 路由器&#xff08;Router&#xff09; 网关 前言 笔者最近正在整理&#xff08;笔者开的坑不少&#xf…

第一章,信息安全概述

什么是信息&#xff1f;------信息是通过施加于数据上的某种约定而赋予这些数据的含义。 什么是信息安全&#xff1f; ISO----->数据处理系统建立和采取技术、采取技术、管理的安全保护&#xff0c;用来保护计算机硬件、软件、数据不因为偶然的或恶意的原因遭受到破环。 美…

curope python安装

目录 curope安装 测试: 报错:libc10.so: cannot open shared object file: No such file or directory 解决方法: curope安装 git clone : GitHub - Junyi42/croco at bd6f4e07d5c4f13ae5388efc052dadf142aff754 cd models/curope/ python setup.py build_ext --inplac…