[paddle] 矩阵相关的指标

ops/2025/2/3 9:01:51/

行列式 det

行列式定义参考

d e t ( A ) = ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) =\sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)=i1,i2,,in(1)σ(i1,,in)a1,i1a2,i2,,an,in
i 1 , ⋯ , i n i_1,\cdots,i_n i1,,in 1 , ⋯ , n 1,\cdots,n 1,,n 的排列.

参数
x (Tensor):输入一个或批量矩阵。x 的形状应为 [*, M, M],其中 * 为零或更大的批次维度,数据类型支持 float32、float64。

返回
Tensor,输出矩阵的行列式值 Shape 为 [*] 。

多个方阵的行列式

import paddle
paddle.seed(2023)
x =  paddle.randn([4,3,3])
A = paddle.linalg.det(x)
print(A)

常用方阵的行列式:

import paddle
paddle.seed(2023)
x =  paddle.randn([3,3])
A = paddle.linalg.det(x)
print(A)

矩阵的范数 norm

矩阵的算子范数

矩阵的算子范数(也称为矩阵范数或诱导范数)是衡量矩阵作为线性算子作用在向量上的“放大”程度的一种度量。算子范数依赖于向量范数的定义,常见的算子范数包括以下几种:

  1. 2-范数(谱范数)
    矩阵的2-范数是矩阵最大奇异值或最大特征值的绝对值。对于矩阵 A A A ,2-范数定义为:
    ∥ A ∥ 2 = σ max ⁡ ( A ) \|A\|_2 = \sigma_{\max}(A) A2=σmax(A)
    其中 σ max ⁡ ( A ) \sigma_{\max}(A) σmax(A)矩阵 A A A 的最大奇异值。2-范数也是矩阵作为线性算子在欧几里得空间中最大“拉伸”效果的度量。
  2. 1-范数
    矩阵的1-范数是矩阵列向量1-范数的最大值。对于矩阵 A A A ,1-范数定义为:
    ∥ A ∥ 1 = max ⁡ ∥ x ∥ 1 = 1 ∥ A x ∥ 1 \|A\|_1 = \max_{\|x\|_1 = 1} \|Ax\|_1 A1=x1=1maxAx1
    这实际上是矩阵列向量的绝对和的最大值。
  3. ∞ \infty -范数(无穷范数)
    矩阵 ∞ \infty -范数是矩阵行向量1-范数的最大值。对于矩阵 A A A ∞ \infty -范数定义为:
    ∥ A ∥ ∞ = max ⁡ ∥ x ∥ ∞ = 1 ∥ A x ∥ ∞ \|A\|_{\infty} = \max_{\|x\|_{\infty} = 1} \|Ax\|_{\infty} A=x=1maxAx
    这实际上是矩阵行向量的绝对和的最大值。
  4. p-范数
    更一般地,可以定义矩阵的p-范数。对于矩阵 A A A ,p-范数定义为:
    ∥ A ∥ p = max ⁡ ∥ x ∥ p = 1 ∥ A x ∥ p \|A\|_p = \max_{\|x\|_p = 1} \|Ax\|_p Ap=xp=1maxAxp
    其中 p p p 是一个正实数。当 p = 2 p = 2 p=2 时,就是2-范数(谱范数)。
    算子范数的性质:
  • 正定性:对于任意矩阵 A A A,都有 ∥ A ∥ ≥ 0 \|A\| \geq 0 A0,且 ∥ A ∥ = 0 \|A\| = 0 A=0 当且仅当 A = 0 A = 0 A=0
  • 齐次性:对于任意矩阵 A A A 和标量 c c c,都有 ∥ c A ∥ = ∣ c ∣ ∥ A ∥ \|cA\| = |c| \|A\| cA=c∣∥A
  • 三角不等式:对于任意矩阵 A A A B B B,都有 ∥ A + B ∥ ≤ ∥ A ∥ + ∥ B ∥ \|A + B\| \leq \|A\| + \|B\| A+BA+B
  • 相容性:对于任意矩阵 A A A B B B,都有 ∥ A B ∥ ≤ ∥ A ∥ ∥ B ∥ \|AB\| \leq \|A\| \|B\| ABA∥∥B

矩阵的核范数

矩阵的核范数(Nuclear Norm)是矩阵理论中的一个重要概念,特别是在低秩矩阵恢复和压缩感知等领域。核范数是矩阵奇异值之和,它可以看作是矩阵的秩的一种凸近似。
对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} ARm×n,其核范数定义为:
∥ A ∥ ∗ = ∑ i = 1 min ⁡ ( m , n ) σ i ( A ) \|A\|_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A) A=i=1min(m,n)σi(A)
其中, σ i ( A ) \sigma_i(A) σi(A)表示矩阵 A A A 的第 i i i 个奇异值,奇异值是矩阵 A A A 的奇异值分解(SVD)中的非负对角元素。
核范数的一些重要性质包括:

  1. 凸性:核范数是矩阵秩的凸包络,这意味着它是秩函数的最小凸近似。在优化问题中,使用核范数可以使得问题变得可解,因为秩函数是非凸的,而核范数是凸的。
  2. ** lipschitz连续性**:核范数是 lipschitz连续的,这意味着对于任意两个矩阵 A A A B B B,存在常数 L L L 使得:
    ∥ A ∥ ∗ − ∥ B ∥ ∗ ∥ ≤ L ∥ A − B ∥ F \|A\|_* - \|B\|_* \| \leq L \|A - B\|_F ABLABF
    其中 ( | \cdot |_F ) 表示 Frobenius 范数。
  3. 矩阵逼近:在给定矩阵的核范数约束下,最优的低秩逼近可以通过矩阵的奇异值软阈值化实现。这意味着核范数在低秩矩阵逼近问题中起着关键作用。

矩阵的Frobenius范数

矩阵的F范数,也称为Frobenius范数,是矩阵元素平方和的平方根。它将矩阵视为一个长向量,并计算其欧几里得范数。对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} ARm×n,其Frobenius范数定义为:
∥ A ∥ F = ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 \|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} AF=i=1mj=1naij2
其中, a i j a_{ij} aij 表示矩阵 A A A 的第 i i i 行第 j j j 列的元素。
Frobenius范数的一些重要性质包括:

  1. 与核范数的关系:对于任意矩阵 A A A,有 ∥ A ∥ ∗ ≤ ∥ A ∥ F \|A\|_* \leq \|A\|_F AAF,其中 ∥ A ∥ ∗ \|A\|_* A表示矩阵的核范数。
  2. 与2-范数的关系:对于矩阵 A A A ,其Frobenius范数等于其向量化的2-范数,即 ∥ A ∥ F = ∥ v e c ( A ) ∥ 2 \|A\|_F = \|vec(A)\|_2 AF=vec(A)2,其中 v e c ( A ) vec(A) vec(A) 表示将矩阵 A A A 按列堆叠成向量。

paddle.linalg.norm(x, p=None, axis=None, keepdim=False, name=None)

将计算给定 Tensor 的矩阵范数(Frobenius 范数, Nuclear 范数或 p 范数)和向量范数(向量 1 范数、2 范数、或者通常的 p 范数)。

该函数计算的是向量范数还是矩阵范数,确定方法如下: - 如果 axis 是 int 类型,计算向量范数 - 如果 axis 是二维数组,计算矩阵范数 - 如果 axis 为 None,x 会被压缩成一维向量然后计算向量范数

Paddle 支持以下范数:

参数
x (Tensor) - 输入 Tensor。维度为多维,数据类型为 float32 或 float64。

p (int|float|string,可选) - 范数(ord)的种类。目前支持的值为fro(Frobenius范数) 、 nuc(核范数)、inf、-inf、0、1、2,和任何实数 p 对应的 p 范数。默认值为 None。

axis (int|list|tuple,可选) - 使用范数计算的轴。如果 axis 为 None,则忽略 input 的维度,将其当做向量来计算。如果 axis 为 int 或者只有一个元素的 list|tuple,norm API 会计算输入 Tensor 的向量范数。如果 axis 为包含两个元素的 list,API 会计算输入 Tensor 的矩阵范数。当 axis < 0 时,实际的计算维度为 rank(input) + axis。默认值为 None 。

keepdim (bool,可选) - 是否在输出的 Tensor 中保留和输入一样的维度,默认值为 False。当 keepdim 为 False 时,输出的 Tensor 会比输入 input 的维度少一些。

name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

返回
Tensor,在指定 axis 上进行范数计算的结果,与输入 input 数据类型相同。

import paddle
x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
print(x)# compute frobenius norm along last two dimensions.
out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
print(out_fro)# compute 2-order vector norm along last dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
print(out_pnorm)# compute 2-order  norm along [0,1] dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
print(out_pnorm)# compute inf-order  norm
out_pnorm = paddle.linalg.norm(x, p=float("inf"))
print(out_pnorm)out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
print(out_pnorm)# compute -inf-order  norm
out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
print(out_pnorm)out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
print(out_pnorm)

条件数 cond

c o n d ( A , p ) = sup ⁡ x ≠ 0 ∥ A ∥ p ∥ A − 1 ∥ p \mathrm{cond}(A,p) =\sup_{x\neq 0} \frac{\|A\|_p}{\|A^{-1}\|_p} cond(A,p)=x=0supA1pAp
其中 ∥ ⋅ ∥ p \| \cdot \|_p p矩阵 p p p 范数。

根据范数种类 p 计算一个或一批矩阵的条件数,也可以通过 paddle.cond 来调用。

参数
x (Tensor):输入可以是形状为 (, m, n) 的矩阵 Tensor, * 为零或更大的批次维度,此时 p 为 2 或 -2;也可以是形状为 (, n, n) 的可逆(批)方阵 Tensor,此时 p 为任意已支持的值。数据类型为 float32 或 float64 。

p (float|string,可选):范数种类。目前支持的值为 fro(Frobenius范数) 、 nuc(核范数) 、 1 、 -1 、 2 、 -2 、 inf 、 -inf。默认值为 None,即范数种类为 2 。

name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

返回
Tensor,条件数的计算结果,数据类型和输入 x 的一致。

import paddle
paddle.seed(2023)
x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])# compute conditional number when p is None
out = paddle.linalg.cond(x)
print(out)# compute conditional number when order of the norm is 'fro'
out_fro = paddle.linalg.cond(x, p='fro')
print(out_fro)# compute conditional number when order of the norm is 'nuc'
out_nuc = paddle.linalg.cond(x, p='nuc')
print(out_nuc)# compute conditional number when order of the norm is 1
out_1 = paddle.linalg.cond(x, p=1)
print(out_1)# compute conditional number when order of the norm is -1
out_minus_1 = paddle.linalg.cond(x, p=-1)
print(out_minus_1)# compute conditional number when order of the norm is 2
out_2 = paddle.linalg.cond(x, p=2)
print(out_2)# compute conditional number when order of the norm is -1
out_minus_2 = paddle.linalg.cond(x, p=-2)
print(out_minus_2)# compute conditional number when order of the norm is inf
out_inf = paddle.linalg.cond(x, p=float("inf"))
print(out_inf)# compute conditional number when order of the norm is -inf
out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
print(out_minus_inf)a = paddle.randn([2, 4, 4])
print(a)a_cond_fro = paddle.linalg.cond(a, p='fro')
print(a_cond_fro)b = paddle.randn([2, 3, 4])
print(b)b_cond_2 = paddle.linalg.cond(b, p=2)
print(b_cond_2)

矩阵的秩

线性无关性的定义

一组向量被称为线性无关,如果其中没有任何一个向量可以表示为其他向量的线性组合, 例如
α 1 = ∑ i = 2 n k i α i \alpha_1 = \sum_{i=2}^n k_i\alpha_i α1=i=2nkiαi
矩阵的行向量组和列向量组
给定一个 m × n m \times n m×n 矩阵 A A A ,它包含 m m m 个行向量和 n n n 个列向量。
极大线性无关组
在一组向量中,极大线性无关组是指包含最多线性无关向量的子集。添加任何额外的向量都会使该组变得线性相关。

矩阵的秩的定义

矩阵 A A A 的秩是指其行向量组或列向量组中极大线性无关组的大小。
矩阵的行秩等于其列秩,统称为矩阵的秩。

import paddlea = paddle.eye(10)
b = paddle.linalg.matrix_rank(a)
print(b)c = paddle.ones(shape=[3, 4, 5, 5])
d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
print(d)

http://www.ppmy.cn/ops/155265.html

相关文章

【DeepSeek】本地快速搭建DeepSeek

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 博客内容主要围绕&#xff1a; 5G/6G协议讲解 高级C语言讲解 Rust语言讲解 文章目录 本地快速搭建DeepSeek一、安装及配置ollama二、DeepSeek模型…

数字化创新者如何利用开源2+1链动模式AI智能名片S2B2C商城小程序源码重塑市场地位

摘要&#xff1a;在数字化转型的浪潮中&#xff0c;数字化创新者正通过整合前沿技术&#xff0c;重塑行业格局&#xff0c;引领市场变革。本文深入探讨了开源21链动模式、AI智能名片以及S2B2C商城小程序源码等技术在数字化创新中的应用&#xff0c;旨在揭示这些技术如何助力企业…

VSCode设置内容字体大小

1、打开VSCode软件&#xff0c;点击左下角的“图标”&#xff0c;选择“Setting”。 在命令面板中的Font Size处选择适合自己的字体大小。 2、对比Font Size值为14与20下的字体大小。

【工欲善其事】利用 DeepSeek 实现复杂 Git 操作:从原项目剥离出子版本树并同步到新的代码库中

文章目录 利用 DeepSeek 实现复杂 Git 操作1 背景介绍2 需求描述3 思路分析4 实现过程4.1 第一次需求确认4.2 第二次需求确认4.3 第三次需求确认4.4 V3 模型&#xff1a;中间结果的处理4.5 方案验证&#xff0c;首战告捷 5 总结复盘 利用 DeepSeek 实现复杂 Git 操作 1 背景介绍…

利用ue5制作CG动画笔记

tips&#xff1a; 按住鼠标中键可以拖动枢轴点 在曲线编辑器中按住shift可以使曲线编辑保持在x轴 专业术语&#xff1a; CGI&#xff1a;计算机生成图象&#xff08;computer-generated imagery&#xff09;真实的不算&#xff0c;计算机生成的 Compositing&#xff1a;合…

科技快讯 | 领英“隐私风波”告一段落;华为余承东智驾 1345 公里返工,称智界 R7 打赢“鸡蛋保卫战”;谷歌翻译将增“提问”功能

谷歌安卓 16 快捷设置被曝告别悬浮窗&#xff0c;选项在面板内展开 科技媒体Android Authority于1月30日发布博文&#xff0c;称谷歌安卓16更新中&#xff0c;快捷面板&#xff08;Quick Setting&#xff09;功能可能回归旧版样式。当前安卓版Quick Setting点击磁贴会扩展为浮动…

Golang 并发机制-4:用Mutex管理共享资源

并发性是Go的强大功能之一&#xff0c;它允许多个线程&#xff08;并发线程&#xff09;同时执行。然而&#xff0c;权力越大&#xff0c;责任越大。当多个例程并发地访问和修改共享资源时&#xff0c;可能会导致数据损坏、竞争条件和不可预测的程序行为。为了解决这些问题&…

北大:三阶段学习优化多模态推理问答

&#x1f4d6;标题&#xff1a;ReasVQA: Advancing VideoQA with Imperfect Reasoning Process &#x1f310;来源&#xff1a;arXiv, 2501.13536 &#x1f31f;摘要 &#x1f538;视频问答&#xff08;VideoQA&#xff09;是一项具有挑战性的任务&#xff0c;需要理解视频中…