PyTorch 快速入门

ops/2025/2/2 16:32:28/

我们将通过一个简单的示例,快速了解如何使用 PyTorch 进行机器学习任务。PyTorch 是一个开源机器学习库,它提供了丰富的工具和库,帮助我们轻松地构建、训练和测试神经网络模型。以下是本教程的主要内容:

一、数据处理

PyTorch 提供了两个基本的数据处理工具:torch.utils.data.DataLoadertorch.utils.data.DatasetDataset 用于存储样本及其对应的标签,而 DataLoader 则为 Dataset 提供了一个可迭代的包装器。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

PyTorch 还提供了许多特定领域的库,如 TorchText、TorchVision 和 TorchAudio,这些库中都包含了各种数据集。在本教程中,我们将使用 TorchVision 中的 FashionMNIST 数据集。每个 TorchVision Dataset 都包含两个参数:transformtarget_transform,分别用于修改样本和标签。

# 下载 FashionMNIST 数据集
training_data = datasets.FashionMNIST(root="data",train=True,download=True,transform=ToTensor()
)test_data = datasets.FashionMNIST(root="data",train=False,download=True,transform=ToTensor()
)

我们将 Dataset 作为参数传递给 DataLoaderDataLoader 为我们的数据集提供了一个可迭代的包装器,并支持自动批处理、采样、洗牌和多进程数据加载。在这里,我们定义了一个大小为 64 的批次,即数据加载器可迭代对象的每个元素将返回一个包含 64 个特征和标签的批次。

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

二、创建模型

在 PyTorch 中,我们通过创建一个继承自 nn.Module 的类来定义神经网络。我们在 __init__ 函数中定义网络的层,并在 forward 函数中指定数据如何通过网络传递。为了加速神经网络中的操作,我们将网络移动到加速器(如 CUDA、MPS、MTIA 或 XPU)上。如果当前加速器可用,我们将使用它;否则,我们将使用 CPU。

class NeuralNetwork(nn.Module):def __init__(self):super(NeuralNetwork, self).__init__()self.flatten = nn.Flatten()self.linear_relu_stack = nn.Sequential(nn.Linear(28*28, 512),nn.ReLU(),nn.Linear(512, 512),nn.ReLU(),nn.Linear(512, 10))def forward(self, x):x = self.flatten(x)logits = self.linear_relu_stack(x)return logits

三、优化模型参数

为了训练模型,我们需要一个损失函数和一个优化器。在一个训练循环中,模型会对训练数据集(以批次形式提供)进行预测,并将预测误差反向传播以调整模型的参数。

def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)model.train()for batch, (X, y) in enumerate(dataloader):X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)loss = loss_fn(pred, y)# 反向传播loss.backward()optimizer.step()optimizer.zero_grad()if batch % 100 == 0:loss, current = loss.item(), (batch + 1) * len(X)print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

我们还需要检查模型在测试数据集上的性能,以确保它正在学习。

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss, correct = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizeprint(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程会在多个迭代(epoch)中进行。在每个 epoch 中,模型会学习参数以做出更好的预测。我们在每个 epoch 打印模型的准确率和损失;我们希望看到准确率随着每个 epoch 的增加而增加,损失则随着每个 epoch 的增加而减少。

for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(train_dataloader, model, loss_fn, optimizer)test(test_dataloader, model, loss_fn)
print("Done!")

四、保存模型

保存模型的一种常见方法是序列化内部状态字典(包含模型参数)。

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

五、加载模型

加载模型的过程包括重新创建模型结构,并将状态字典加载到其中。

model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))

现在,我们可以使用这个模型来进行预测。

classes = ["T-shirt/top","Trouser","Pullover","Dress","Coat","Sandal","Shirt","Sneaker","Bag","Ankle boot",
]model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():x = x.to(device)pred = model(x)predicted, actual = classes[pred[0].argmax(0)], classes[y]print(f'Predicted: "{predicted}", Actual: "{actual}"')

以上就是使用 PyTorch 进行机器学习任务的基本流程。

六、完整代码

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor# 下载 FashionMNIST 数据集
training_data = datasets.FashionMNIST(root="data",train=True,download=True,transform=ToTensor()
)test_data = datasets.FashionMNIST(root="data",train=False,download=True,transform=ToTensor()
)# 创建数据加载器
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)# 定义神经网络模型
class NeuralNetwork(nn.Module):def __init__(self):super(NeuralNetwork, self).__init__()self.flatten = nn.Flatten()self.linear_relu_stack = nn.Sequential(nn.Linear(28*28, 512),nn.ReLU(),nn.Linear(512, 512),nn.ReLU(),nn.Linear(512, 10))def forward(self, x):x = self.flatten(x)logits = self.linear_relu_stack(x)return logits# 检查是否有可用的加速器
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")# 实例化模型并移动到加速器上
model = NeuralNetwork().to(device)
print(model)# 定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)# 定义训练函数
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)model.train()for batch, (X, y) in enumerate(dataloader):X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)loss = loss_fn(pred, y)# 反向传播loss.backward()optimizer.step()optimizer.zero_grad()if batch % 100 == 0:loss, current = loss.item(), (batch + 1) * len(X)print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")# 定义测试函数
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss, correct = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizeprint(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")# 训练和测试模型
epochs = 5
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(train_dataloader, model, loss_fn, optimizer)test(test_dataloader, model, loss_fn)
print("Done!")# 保存模型
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")# 加载模型
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))# 使用模型进行预测
classes = ["T-shirt/top","Trouser","Pullover","Dress","Coat","Sandal","Shirt","Sneaker","Bag","Ankle boot",
]model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():x = x.to(device)pred = model(x)predicted, actual = classes[pred[0].argmax(0)], classes[y]print(f'Predicted: "{predicted}", Actual: "{actual}"')


http://www.ppmy.cn/ops/155079.html

相关文章

DDD 和 TDD

领域驱动设计(DDD) DDD 是一种软件开发方法,强调通过与领域专家的密切合作来构建一个反映业务逻辑的模型。其核心思想是将业务逻辑和技术实现紧密结合,以便更好地解决复杂的业务问题。 DDD 的关键概念: 1. 领域模型 …

Spring Boot - 数据库集成05 - 集成MongoDB

Spring Boot集成MongoDB 文章目录 Spring Boot集成MongoDB一:使用前的准备1:依赖导入 & 配置2:实体类创建 二:核心 - MongoRepository三:核心 - MongoTemplate1:集合操作2:文档操作(重点)3&…

RabbitMQ---面试题

常见面试题 1.MQ的作用及应用场景 类似问题:项目什么情况下用到了MQ,为什么要用MQ MQ的主要应用场景,消息队列的应用场景,为什么说消息队列可以削峰 首先MQ是一种用来接收和转发消息的队列,常见的应用常见如下&…

【力扣】15.三数之和

AC截图 题目 思路 这道题如果简单的用暴力三重遍历去做,会超时。所以我们思考假如有三个下标,i,l,r 其中i0(初始),li1 rnums.size()-1 我们固定nums[i]的值,那么就转换为两数之和…

自定义数据集使用框架的线性回归方法对其进行拟合

代码 import torch import numpy as np import torch.nn as nncriterion nn.MSELoss()data np.array([[-0.5, 7.7],[1.8, 98.5],[0.9, 57.8],[0.4, 39.2],[-1.4, -15.7],[-1.4, -37.3],[-1.8, -49.1],[1.5, 75.6],[0.4, 34.0],[0.8, 62.3]])x_data data[:, 0] y_data data…

边缘计算与ROS结合:如何实现分布式机器人智能决策?

前言 在现代机器人系统中,分布式决策能力正成为实现群体协作任务的关键需求。传统集中式架构存在决策延迟、通信瓶颈以及容错性低等问题,而边缘计算结合 ROS(Robot Operating System)为分布式机器人智能决策提供了全新的解决方案…

【ArcGIS_Python】使用arcpy脚本将shape数据转换为三维白膜数据

说明: 该专栏之前的文章中python脚本使用的是ArcMap10.6自带的arcpy(好几年前的文章),从本篇开始使用的是ArcGIS Pro 3.3版本自带的arcpy,需要注意不同版本对应的arcpy函数是存在差异的 数据准备:准备一个…

实现网站内容快速被搜索引擎收录的方法

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/6.html 实现网站内容快速被搜索引擎收录,是网站运营和推广的重要目标之一。以下是一些有效的方法,可以帮助网站内容更快地被搜索引擎发现和收录: 一、确…