PyTorch框架——基于深度学习YOLOv11神经网络路面坑洞检测系统

ops/2025/1/18 14:56:25/

基于深度学习YOLOv11神经网络路面坑洞检测系统,其能识别路面坑洞,见如下

第一步:YOLOv11介绍

YOLOv11是由Ultralytics公司开发的新一代目标检测算法,它在之前YOLO版本的基础上进行了显著的架构和训练方法改进。以下是YOLOv11的一些详细介绍和创新点:

增强的特征提取YOLOv11采用了改进的骨干网络和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务的性能。

优化效率和速度:引入了精细的架构设计和优化的训练流程,提供了更快的处理速度,并在准确性和性能之间保持了最佳平衡。

更少参数下的高准确度YOLOv11在COCO数据集上实现了更高的平均精度均值(mAP),同时比YOLOv8少用了22%的参数,使其在不牺牲准确性的情况下具有计算效率。

跨环境的适应性YOLOv11可以无缝部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统,确保了最大的灵活性。

支持广泛的任务YOLOv11不仅支持目标检测,还支持实例分割、图像分类、姿态估计和定向目标检测(OBB),满足一系列计算机视觉挑战。

YOLOv11的网络结构和关键创新点包括:

C3k2机制:这是一种新的卷积机制,它在网络的浅层将c3k参数设置为False,类似于YOLOv8中的C2f结构。
C2PSA机制:这是一种在C2机制内部嵌入的多头注意力机制,类似于在C2中嵌入了一个PSA(金字塔空间注意力)机制。
深度可分离卷积(DWConv):在分类检测头中增加了两个DWConv,这种卷积操作减少了计算量和参数量,提高了模型的效率。
自适应锚框机制:自动优化不同数据集上的锚框配置,提高了检测精度。
EIoU损失函数:引入了新的EIoU(Extended IoU)损失函数,考虑了预测框与真实框的重叠面积,长宽比和中心点偏移,提高了预测精度。
YOLOv11的训练过程包括数据准备、数据增强、超参数优化和模型训练几个阶段。它使用混合精度训练技术,在不降低模型精度的情况下,加快了训练速度,并减少了显存的占用。

在部署方面,YOLOv11支持导出为不同的格式,如ONNX、TensorRT和CoreML,以适应不同的部署平台。它还采用了多种加速技术,如半精度浮点数推理(FP16)、批量推理和硬件加速,以提升推理速度。

YOLOv11的成功标志着目标检测技术又迈出了重要的一步,它为开发者提供了更强大的工具来应对日益复杂的视觉检测任务。

第二步:YOLOv11网络结构

第三步:代码展示

# Ultralytics YOLO 🚀, AGPL-3.0 licensefrom pathlib import Pathfrom ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
from ultralytics.utils import ROOT, yaml_loadclass YOLO(Model):"""YOLO (You Only Look Once) object detection model."""def __init__(self, model="yolo11n.pt", task=None, verbose=False):"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""path = Path(model)if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}:  # if YOLOWorld PyTorch modelnew_instance = YOLOWorld(path, verbose=verbose)self.__class__ = type(new_instance)self.__dict__ = new_instance.__dict__else:# Continue with default YOLO initializationsuper().__init__(model=model, task=task, verbose=verbose)@propertydef task_map(self):"""Map head to model, trainer, validator, and predictor classes."""return {"classify": {"model": ClassificationModel,"trainer": yolo.classify.ClassificationTrainer,"validator": yolo.classify.ClassificationValidator,"predictor": yolo.classify.ClassificationPredictor,},"detect": {"model": DetectionModel,"trainer": yolo.detect.DetectionTrainer,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,},"segment": {"model": SegmentationModel,"trainer": yolo.segment.SegmentationTrainer,"validator": yolo.segment.SegmentationValidator,"predictor": yolo.segment.SegmentationPredictor,},"pose": {"model": PoseModel,"trainer": yolo.pose.PoseTrainer,"validator": yolo.pose.PoseValidator,"predictor": yolo.pose.PosePredictor,},"obb": {"model": OBBModel,"trainer": yolo.obb.OBBTrainer,"validator": yolo.obb.OBBValidator,"predictor": yolo.obb.OBBPredictor,},}class YOLOWorld(Model):"""YOLO-World object detection model."""def __init__(self, model="yolov8s-world.pt", verbose=False) -> None:"""Initialize YOLOv8-World model with a pre-trained model file.Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns defaultCOCO class names.Args:model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.verbose (bool): If True, prints additional information during initialization."""super().__init__(model=model, task="detect", verbose=verbose)# Assign default COCO class names when there are no custom namesif not hasattr(self.model, "names"):self.model.names = yaml_load(ROOT / "cfg/datasets/coco8.yaml").get("names")@propertydef task_map(self):"""Map head to model, validator, and predictor classes."""return {"detect": {"model": WorldModel,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,"trainer": yolo.world.WorldTrainer,}}def set_classes(self, classes):"""Set classes.Args:classes (List(str)): A list of categories i.e. ["person"]."""self.model.set_classes(classes)# Remove background if it's givenbackground = " "if background in classes:classes.remove(background)self.model.names = classes# Reset method class names# self.predictor = None  # reset predictor otherwise old names remainif self.predictor:self.predictor.model.names = classes

第四步:统计训练过程的一些指标,相关指标都有

第五步:运行(支持图片、文件夹、摄像头和视频功能)

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

PyTorch框架——基于深度学习YOLOv11神经网络路面坑洞检测系统_哔哩哔哩_bilibili


http://www.ppmy.cn/ops/151114.html

相关文章

Ability Kit-程序框架服务(类似Android Activity)

文章目录 Ability Kit(程序框架服务)简介Stage模型开发概述Stage模型应用组件应用/组件级配置UIAbility组件概述概述声明配置 生命周期概述生命周期状态说明Create状态WindowStageCreate**和**WindowStageDestroy状态WindowStageWillDestroy状态Foregrou…

.Net MVC中视图的View()的具体用法

在控制器中我们执行完逻辑之后,然后就是要准备开始跳转到视图中,那么该如何指定跳转的视图呢? public IActionResult Index() {return View(); } 如果View中参数,他默认寻找的视图路径是/Views/控制器名/方法名 如果找不到&#x…

有效提取激光雷达点云平面点

有效地面点云的提取和平面点的识别是通过一系列步骤实现的。以下是主要步骤: 高度过滤: 首先,根据激光雷达传感器的安装高度,对当前帧扫描得到的点云进行高度过滤,以初步分割出地面点云。假设第 k k k 帧的点云为 { …

三格电子CAN 转以太网

一、功能描述 SG-CANET-210 是一款用来把 CAN 总线数据转为网口数据的设备。网口支 持 TCP Sever 、TCP Client 、UDP Sever 、UDP Client 、UDP Broadcast 模式,可以 通过软件配置和网页配置。设备提供两路 CAN 接口,两路 CAN 可分别配置为 不同的工作…

网安-HTML

HTML 一、HTML概述及发展史 HTML全称(hypertext markup language)译为超文本标记语言,其译文代表了HTML的含义,它和其他编程语言不同的是,HTML不是一门真正意义上编程语言,而是一种标记语言,通…

Visual Studio Community 2022(VS2022)安装方法

废话不多说直接上图: 直接上步骤: 1,首先可以下载安装一个Visual Studio安装器,叫做Visual Studio installer。这个安装文件很小,很快就安装完成了。 2,打开Visual Studio installer 小软件 3&#xff0c…

前端框架: Vue3组件设计模式

前端框架: Vue3组件设计模式 在前端开发中,Vue框架一直受到开发者的喜爱。它不仅易于上手,而且功能丰富,尤其是在Vue3中引入了Composition API和Teleport等新特性,进一步提升了开发体验。在Vue3中,组件设计模式是一个非…

Cursor历史记录导出完整指南 - 1s保存Cursor Chat历史对话记录

详细教你如何导出和保存Cursor的聊天记录。使用SpecStory插件,轻松实现Cursor历史记录的自动保存、导出和分享,让AI对话记录永久保存。 Cursor历史记录导出神器 - SpecStory使用指南 强大的Cursor聊天记录保存工具,让任何对话都不再丢失 想…