检验统计量与p值笔记

ops/2025/1/17 22:51:21/

一、背景

        以雨量数据为例,当获得一个站点一年的日雨量数据后,我们需要估计该站点的雨量的概率分布情况,因此我们利用有参估计的方式如极大似然法估计得到了假定该随机变量服从某一分布的参数,从而得到该站点的概率密度函数(连续型随机变量)。但是我们并不知道这样的拟合是否准确,因此需要进行检验,我们称这个过程为假设检验

二、原理

        假设检验的一般步骤:(1)建立假设(2)寻找检验统计量(3)确定显著性水平或决定域(4)做出判断

        在第一步中,我们称做出的假设为原假设零假设 H0 而对立的假设称为备择假设 H1。在做出了假设之后,需要选择合适的检验统计量,但无论是什么检验统计量,其目的是为了衡量样本与假设的理论样本之间的偏差,因此这个偏差越小则证明我们的假设越准确,根据检验统计量的不同,我们可以得到不同的假设检验方法,如 t 检验,主要用于检验样本均值与假设均值是否存在显著误差;卡方检验,用于离散型随机变量检验分类的频数差异...

        当确立定检验统计量后进行计算,得到样本与理论之间的检验统计量结果,我们观察这个结果,如果这个结果比较大,我们就认为原假设不可靠,拒接原假设;如果这个结果比较小,我们就接受这个假设。但是有一个问题,不同的检验统计量有不同的形式和临界值表,这在对比过程中无法进行统一,所以我们引入了 p 值和显著性水平的概念(个人理解...)

        p 值为定义为假设检验中中假设原假设为真时观测到的至少与实际观察样本相同的样本的概率。说人话就是,在 p 值就是概率,在零假设成立的情况下,观察到当前数据或更极端数据的可能性。而观察到当前数据或更极端数据是基于检验统计量的,由于不同的检验方法都可以用 p 来判断,人们在假设检验中预先设定的一个阈值,用于决定是否拒绝零假设。决定拒绝零假设的标准,显著性水平设定了一个标准,帮助我们判断 p 值是否足够小,从而决定是否拒绝零假设,如果 p值 ≤ α,我们拒绝零假设,认为结果是显著的;如果 p值 > α,我们不能拒绝零假设,认为结果不显著。

        这里蕴含的逻辑是:p 表示的是在假设原假设成立条件下,观察到的数据的可能性,表示当前观察的是已经发生了,计算它的概率,如果很小(小于某一显著性水平),表示这个已经发生的事发生概率很小(但它却发生了),因此我们要拒绝(个人理解...)

        为什么 p 是基于检验统计量的:在假设检验中,我们通过对样本数据的计算得到一个检验统计量,根据检验统计量的值我们计算对应的 p值,即在零假设成立的条件下,观察到当前统计量或比当前统计量更极端的结果的概率,而 p 值概念中的观察到当前数据就是指观察到当前样本结果,而更极端结果就是值比计算出来的检验统计量还糟糕的概率

三、举例

        现在我有一个站点从1980-2012年的日雨量数据,假设其服从正态分布,利用极大似然法得到参数后,通过 KS 检验其是否符合正态分布。KS 的检验统计量如下:

       

        计算得到的检验统计量为 Dn = 0.181,假设服从正态分布,那么 p 值就是 P(D>Dn),就是当前情况以及更糟的概率。设显著性水平 0.05,如果 p < 0.05 概率太低了,却发生了,拒绝!反之接受。


http://www.ppmy.cn/ops/150940.html

相关文章

如何在Ubuntu上安装Cmake

前言 ​ 本文主要阐述如何在Ubuntu22.04上面安装cmake&#xff0c;具体可看下面的操作。 正文 一、环境 Ubuntu22.04 cmake-3.31.4.tar.gz 二、步骤 参考这个方案&#xff1a; 【运维】Ubuntu如何安装最新版本的Cmake&#xff0c;编译安装Cmake&#xff0c;直接命令安装…

大疆最新款无人机发布,可照亮百米之外目标

近日&#xff0c;DJI 大疆发布全新小型智能多光旗舰 DJI Matrice 4 系列&#xff0c;包含 Matrice 4T 和 Matrice 4E 两款机型。DJI Matrice 4E 价格为27888 元起&#xff0c;DJI Matrice 4T价格为38888元起。 图片来源&#xff1a;大疆官网 DJI Matrice 4E DJI Matrice 4T D…

解决:ubuntu22.04中IsaacGymEnv保存视频报错的问题

1. IsaacGymEnvs项目介绍 IsaacGymEnvs&#xff1a;基于NVIDIA Isaac Gym的高效机器人训练环境 IsaacGymEnvs 是一个基于 NVIDIA Isaac Gym 的开源 Python 环境库&#xff0c;专为机器人训练提供高效的仿真环境。Isaac Gym 是由 NVIDIA 开发的一个高性能物理仿真引擎&#xf…

从零深度学习:(2)最小二乘法

今天我们从比较简单的线性回归开始讲起&#xff0c;还是一样我们先导入包 import numpy as np import torch import matplotlib as mpl import matplotlib.pyplot as plt a torch.arange(1,5).reshape(2,2).float() a 我们利用刚刚导入的画图的包将这两个点画出来&#xff0…

【云岚到家】-day02-客户管理-认证授权

第二章 客户管理 1.认证模块 1.1 需求分析 1.基础概念 一般情况有用户交互的项目都有认证授权功能&#xff0c;首先我们要搞清楚两个概念&#xff1a;认证和授权 认证: 就是校验用户的身份是否合法&#xff0c;常见的认证方式有账号密码登录、手机验证码登录等 授权:则是该用…

XML序列化和反序列化的学习

1、基本介绍 在工作中&#xff0c;经常为了调通上游接口&#xff0c;从而对请求第三方的参数进行XML序列化&#xff0c;这里常使用的方式就是使用JAVA扩展包中的相关注解和类来实现xml的序列化和反序列化。 2、自定义工具类 import javax.xml.bind.JAXBContext; import javax.x…

EF Core实体跟踪

快照更改跟踪 实体类没有实现属性值改变的通知机制&#xff0c;EF Core是如何检测到变化的呢&#xff1f; 快照更改跟踪&#xff1a;首次跟踪一个实体的时候&#xff0c;EF Core 会创建这个实体的快照。执行SaveChanges()等方法时&#xff0c;EF Core将会把存储的快照中的值与…

C# 多线程发展史(面试思路)

多线程技术 本身是为了 提高 cpu利用率 提高效率而生 因为 cpu分片机制 导致 多线程存在顺序与业务不符合情况 为了满足 正确的执行业务顺序 而诞生第一个要点线程同步 无论是控制主线程的同步等待 thread join task result task wait() 还是线程之间对于共享资源 同步的多种…