Chapter 4.6:Coding the GPT model

ops/2025/1/12 21:29:13/

4 Implementing a GPT model from Scratch To Generate Text

4.6 Coding the GPT model

  • 本章从宏观视角介绍了 DummyGPTModel,使用占位符表示其构建模块,随后用真实的 TransformerBlock 和 LayerNorm 类替换占位符,组装出完整的 1.24 亿参数 GPT-2 模型,并计划在后续章节进行预训练和加载 OpenAI 的预训练权重,同时通过下图 展示了结合本章所有概念的 GPT-2 整体结构。通过将变换器块插入到本章开头的架构中并重复 12 次(以 124M GPT-2 模型为例),我们构建了一个完整且可用的 GPT 架构。

    4_15

    从底部开始,tokenized text 首先被转换为 token embeddings,然后通过 positional embeddings 进行增强。这些信息组合成一个张量,随后通过一系列 transformer 块(如中心部分所示,每个块包含多头注意力机制和前馈神经网络层,并应用了 dropout 和层归一化),这些块堆叠在一起,重复 12 次,我们通过 GPT_CONFIG_124M 字典中的“n_layers”条目指定。(在拥有 15.42 亿个参数的最大 GPT-2 模型中,该transformer块重复了 36 次)。

  • 上图架构的对应代码实现

    python">class GPTModel(nn.Module):def __init__(self, cfg):super().__init__()self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])self.drop_emb = nn.Dropout(cfg["drop_rate"])# 创建 TransformerBlock 模块的顺序堆栈self.trf_blocks = nn.Sequential(*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.final_norm = LayerNorm(cfg["emb_dim"])# self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)def forward(self, in_idx):batch_size, seq_len = in_idx.shapetok_embeds = self.tok_emb(in_idx)pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]x = self.drop_emb(x)x = self.trf_blocks(x)x = self.final_norm(x)logits = self.out_head(x)return logits

    使用 124M 参数模型的配置,我们现在可以用随机初始权重实例化这个 GPT 模型

    python"># 初始化实例化GPT模型
    torch.manual_seed(123)
    tokenizer = tiktoken.get_encoding("gpt2")batch = []txt1 = "Every effort moves you"
    txt2 = "Every day holds a"batch.append(torch.tensor(tokenizer.encode(txt1)))
    batch.append(torch.tensor(tokenizer.encode(txt2)))
    batch = torch.stack(batch, dim=0)
    print(batch)model = GPTModel(GPT_CONFIG_124M)out = model(batch)
    print("Input batch:\n", batch)
    print("\nOutput shape:", out.shape)
    print(out)"""输出"""
    Input batch:tensor([[6109, 3626, 6100,  345],[6109, 1110, 6622,  257]])Output shape: torch.Size([2, 4, 50257])
    tensor([[[ 0.1381,  0.0077, -0.1963,  ..., -0.0222, -0.1060,  0.1717],[ 0.3865, -0.8408, -0.6564,  ..., -0.5163,  0.2369, -0.3357],[ 0.6989, -0.1829, -0.1631,  ...,  0.1472, -0.6504, -0.0056],[-0.4290,  0.1669, -0.1258,  ...,  1.1579,  0.5303, -0.5549]],[[ 0.1094, -0.2894, -0.1467,  ..., -0.0557,  0.2911, -0.2824],[ 0.0882, -0.3552, -0.3527,  ...,  1.2930,  0.0053,  0.1898],[ 0.6091,  0.4702, -0.4094,  ...,  0.7688,  0.3787, -0.1974],[-0.0612, -0.0737,  0.4751,  ...,  1.2463, -0.3834,  0.0609]]],grad_fn=<UnsafeViewBackward0>)
    

    如我们所见,输出张量的形状为 [2, 4, 50257],因为我们输入了 2 个文本,每个文本包含 4 个 token。最后一个维度 50,257 对应于 tokenizer 的词汇表大小。在下一节中,我们将了解如何将这些 50,257 维的输出向量转换回 token。

  • 不过,关于其大小需要简要说明:我们之前将其称为 1.24 亿参数模型;我们可以通过以下方式再次确认这一数字:

    使用 numel() 方法(“元素数量”的缩写),我们可以收集模型参数张量中的参数总数:

    python">total_params = sum(p.numel() for p in model.parameters())
    print(f"Total number of parameters: {total_params:,}")"""输出"""
    Total number of parameters: 163,009,536
    

    模型参数数量为 163M 而非 124M,原因是未应用权重绑定(weight tying),即 GPT-2 中将token embedding层重用作输出层以减少参数;嵌入层将 50,257 维 one-hot 编码标记投影到 768 维嵌入表示,而输出层将其投影回 50,257 维以转换回单词,两者参数数量一致,需进一步验证模型参数数量为 124M。

    python">print("Token embedding layer shape:", model.tok_emb.weight.shape)
    print("Output layer shape:", model.out_head.weight.shape)"""输出"""
    Token embedding layer shape: torch.Size([50257, 768])
    Output layer shape: torch.Size([50257, 768])
    

    相应地,如果我们减去输出层的参数数量,就会得到一个 124M 参数的模型:

    python">total_params_gpt2 =  total_params - sum(p.numel() for p in model.out_head.parameters())
    print(f"Number of trainable parameters considering weight tying: {total_params_gpt2:,}")"""输出"""
    Number of trainable parameters considering weight tying: 124,412,160
    

    即$ 163,009,536 - 50257*768 = 124412160$ ,该模型现在只有 1.24 亿个参数,与 GPT-2 模型的原始大小相匹配。

    在实践中,不使用权重共享训练模型更为简便,因此本节未实现权重共享。后续章节将重新考虑权重共享,并在加载预训练权重时应用。此外,计算模型的内存需求也是一个重要的参考点。

  • 计算模型内存需求

    python"># Calculate the total size in bytes (assuming float32, 4 bytes per parameter)
    total_size_bytes = total_params * 4# Convert to megabytes
    total_size_mb = total_size_bytes / (1024 * 1024)print(f"Total size of the model: {total_size_mb:.2f} MB")"""输出"""
    Total size of the model: 621.83 MB
    

    通过计算 GPTModel 对象中 1.63 亿参数的内存需求,并假设每个参数为 32 位浮点数,占用 4 字节,我们发现模型的总大小为 621.83 MB,这说明了即使是相对较小的 LLMs 也需要较大的存储空间。

  • 在本节中,我们实现了 GPTModel 架构,并看到它输出了形状为 [batch_size, num_tokens, vocab_size] 的数值张量。
    在下一节中,我们将编写代码将这些输出张量转换为文本。## Coding the GPT model

  • 本章从宏观视角介绍了 DummyGPTModel,使用占位符表示其构建模块,随后用真实的 TransformerBlock 和 LayerNorm 类替换占位符,组装出完整的 1.24 亿参数 GPT-2 模型,并计划在后续章节进行预训练和加载 OpenAI 的预训练权重,同时通过下图 展示了结合本章所有概念的 GPT-2 整体结构。通过将变换器块插入到本章开头的架构中并重复 12 次(以 124M GPT-2 模型为例),我们构建了一个完整且可用的 GPT 架构。

    4_15

    从底部开始,tokenized text 首先被转换为 token embeddings,然后通过 positional embeddings 进行增强。这些信息组合成一个张量,随后通过一系列 transformer 块(如中心部分所示,每个块包含多头注意力机制和前馈神经网络层,并应用了 dropout 和层归一化),这些块堆叠在一起,重复 12 次,我们通过 GPT_CONFIG_124M 字典中的“n_layers”条目指定。(在拥有 15.42 亿个参数的最大 GPT-2 模型中,该transformer块重复了 36 次)。

  • 上图架构的对应代码实现

    python">class GPTModel(nn.Module):def __init__(self, cfg):super().__init__()self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])self.drop_emb = nn.Dropout(cfg["drop_rate"])# 创建 TransformerBlock 模块的顺序堆栈self.trf_blocks = nn.Sequential(*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.final_norm = LayerNorm(cfg["emb_dim"])# self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)def forward(self, in_idx):batch_size, seq_len = in_idx.shapetok_embeds = self.tok_emb(in_idx)pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]x = self.drop_emb(x)x = self.trf_blocks(x)x = self.final_norm(x)logits = self.out_head(x)return logits

    使用 124M 参数模型的配置,我们现在可以用随机初始权重实例化这个 GPT 模型

    python"># 初始化实例化GPT模型
    torch.manual_seed(123)
    tokenizer = tiktoken.get_encoding("gpt2")batch = []txt1 = "Every effort moves you"
    txt2 = "Every day holds a"batch.append(torch.tensor(tokenizer.encode(txt1)))
    batch.append(torch.tensor(tokenizer.encode(txt2)))
    batch = torch.stack(batch, dim=0)
    print(batch)model = GPTModel(GPT_CONFIG_124M)out = model(batch)
    print("Input batch:\n", batch)
    print("\nOutput shape:", out.shape)
    print(out)"""输出"""
    Input batch:tensor([[6109, 3626, 6100,  345],[6109, 1110, 6622,  257]])Output shape: torch.Size([2, 4, 50257])
    tensor([[[ 0.1381,  0.0077, -0.1963,  ..., -0.0222, -0.1060,  0.1717],[ 0.3865, -0.8408, -0.6564,  ..., -0.5163,  0.2369, -0.3357],[ 0.6989, -0.1829, -0.1631,  ...,  0.1472, -0.6504, -0.0056],[-0.4290,  0.1669, -0.1258,  ...,  1.1579,  0.5303, -0.5549]],[[ 0.1094, -0.2894, -0.1467,  ..., -0.0557,  0.2911, -0.2824],[ 0.0882, -0.3552, -0.3527,  ...,  1.2930,  0.0053,  0.1898],[ 0.6091,  0.4702, -0.4094,  ...,  0.7688,  0.3787, -0.1974],[-0.0612, -0.0737,  0.4751,  ...,  1.2463, -0.3834,  0.0609]]],grad_fn=<UnsafeViewBackward0>)
    

    如我们所见,输出张量的形状为 [2, 4, 50257],因为我们输入了 2 个文本,每个文本包含 4 个 token。最后一个维度 50,257 对应于 tokenizer 的词汇表大小。在下一节中,我们将了解如何将这些 50,257 维的输出向量转换回 token。

  • 不过,关于其大小需要简要说明:我们之前将其称为 1.24 亿参数模型;我们可以通过以下方式再次确认这一数字:

    使用 numel() 方法(“元素数量”的缩写),我们可以收集模型参数张量中的参数总数:

    python">total_params = sum(p.numel() for p in model.parameters())
    print(f"Total number of parameters: {total_params:,}")"""输出"""
    Total number of parameters: 163,009,536
    

    模型参数数量为 163M 而非 124M,原因是未应用权重绑定(weight tying),即 GPT-2 中将token embedding层重用作输出层以减少参数;嵌入层将 50,257 维 one-hot 编码标记投影到 768 维嵌入表示,而输出层将其投影回 50,257 维以转换回单词,两者参数数量一致,需进一步验证模型参数数量为 124M。

    python">print("Token embedding layer shape:", model.tok_emb.weight.shape)
    print("Output layer shape:", model.out_head.weight.shape)"""输出"""
    Token embedding layer shape: torch.Size([50257, 768])
    Output layer shape: torch.Size([50257, 768])
    

    相应地,如果我们减去输出层的参数数量,就会得到一个 124M 参数的模型:

    python">total_params_gpt2 =  total_params - sum(p.numel() for p in model.out_head.parameters())
    print(f"Number of trainable parameters considering weight tying: {total_params_gpt2:,}")"""输出"""
    Number of trainable parameters considering weight tying: 124,412,160
    

    即$ 163,009,536 - 50257*768 = 124412160$ ,该模型现在只有 1.24 亿个参数,与 GPT-2 模型的原始大小相匹配。

    在实践中,不使用权重共享训练模型更为简便,因此本节未实现权重共享。后续章节将重新考虑权重共享,并在加载预训练权重时应用。此外,计算模型的内存需求也是一个重要的参考点。

  • 计算模型内存需求

    python"># Calculate the total size in bytes (assuming float32, 4 bytes per parameter)
    total_size_bytes = total_params * 4# Convert to megabytes
    total_size_mb = total_size_bytes / (1024 * 1024)print(f"Total size of the model: {total_size_mb:.2f} MB")"""输出"""
    Total size of the model: 621.83 MB
    

    通过计算 GPTModel 对象中 1.63 亿参数的内存需求,并假设每个参数为 32 位浮点数,占用 4 字节,我们发现模型的总大小为 621.83 MB,这说明了即使是相对较小的 LLMs 也需要较大的存储空间。

  • 在本节中,我们实现了 GPTModel 架构,并看到它输出了形状为 [batch_size, num_tokens, vocab_size] 的数值张量。
    在下一节中,我们将编写代码将这些输出张量转换为文本。


http://www.ppmy.cn/ops/149555.html

相关文章

UML系列之Rational Rose笔记三:活动图(泳道图)

一、新建活动图&#xff08;泳道图&#xff09; 依旧在用例视图里面&#xff0c;新建一个activity diagram&#xff1b;新建好之后&#xff0c;就可以绘制活动图了&#xff1a; 正常每个活动需要一个开始&#xff0c;点击黑点&#xff0c;然后在图中某个位置安放&#xff0c;接…

网络原理(二)—— https

https 简介 https 也是一个应用层协议&#xff0c;他是由 http 和 SSL 组成的&#xff08;在 http 的基础上进行加密&#xff0c;把原本http 的明文传输变为了密文传输&#xff09;&#xff0c;简称为 https。 加密的方式大体分为两大类&#xff0c;分别是对称加密和非对称加…

将光源视角的深度贴图应用于摄像机视角的渲染

将光源视角的深度贴图应用于摄像机视角的渲染是阴影映射&#xff08;Shadow Mapping&#xff09;技术的核心步骤之一。这个过程涉及到将摄像机视角下的片段坐标转换到光源视角下&#xff0c;并使用深度贴图来判断这些片段是否处于阴影中。 1. 生成光源视角的深度贴图 首先&…

机器学习之决策树的分类树模型及决策树绘制

决策树分类模型 目录 决策树分类模型决策树概念组成部分&#xff1a;决策树的构建过程&#xff1a;优缺点决策树的优点&#xff1a;决策树的缺点&#xff1a; 熵概念算法数据理解 决策树的三种分法ID3&#xff08;Iterative Dichotomiser 3&#xff09;概念算法步骤 C4.5概念信…

【k8s】监控metrics-server

metrics-server介绍 Metrics Server是一个集群范围的资源使用情况的数据聚合器。作为一个应用部署在集群中。Metric server从每个节点上KubeletAPI收集指标&#xff0c;通过Kubernetes聚合器注册在Master APIServer中。为集群提供Node、Pods资源利用率指标。 就像Linux 系统一样…

MySQL入门学习二(SQL语句基础)

2.1 SQL简介 SQL 是结构化查询语言 (Structure Query Language) 的缩写&#xff0c;它是使用关系模型的数据库应用言。 SQL 的起源可以追溯到 20 世纪 70 年代。当时&#xff0c;数据库管理系统主要采用层次模型和网状模型&#xff0c;数据的 存储和检索非常复杂。为了解决…

在线工具箱源码优化版

在线工具箱 前言效果图部分源码源码下载部署教程下期更新 前言 来自缤纷彩虹天地优化后的我爱工具网源码&#xff0c;百度基本全站收录&#xff0c;更能基本都比较全&#xff0c;个人使用或是建站都不错&#xff0c;挑过很多工具箱&#xff0c;这个比较简洁&#xff0c;非常实…

vmware-ubuntu22.04配置虚拟机win10,重新上网成功

打开问题显示 Hardware配置 Options配置 最后的Advanced&#xff0c;第一次用了BIOS&#xff0c;然后启动中有更新&#xff0c;然后关闭&#xff0c;再用UEFI启动