动手学深度学习-线性神经网络-softmax回归

ops/2024/12/16 0:50:08/

目录

分类问题

网络架构

全连接层的参数开销

softmax运算

小批量样本的矢量化

损失函数

对数似然

softmax及其导数

交叉熵损失

信息论基础

信息量

重新审视交叉熵

模型预测和评估

小结


在上上上一节中我们介绍了线性回归。 随后,然后在上上一节中我们从头实现线性回归。 然后,在上一节中我们使用深度学习框架的高级API简洁实现线性回归

回归可以用于预测多少的问题。 比如预测房屋被售出价格,或者棒球队可能获得的胜场数,又或者患者住院的天数。

事实上,我们也对分类问题感兴趣:不是问“多少”,而是问“哪一个”:

  • 某个电子邮件是否属于垃圾邮件文件夹?

  • 某个用户可能注册不注册订阅服务?

  • 某个图像描绘的是驴、狗、猫、还是鸡?

  • 某人接下来最有可能看哪部电影?

通常,机器学习实践者用分类这个词来描述两个有微妙差别的问题: 1. 我们只对样本的“硬性”类别感兴趣,即属于哪个类别; 2. 我们希望得到“软性”类别,即得到属于每个类别的概率。 这两者的界限往往很模糊。其中的一个原因是:即使我们只关心硬类别,我们仍然使用软类别的模型。

分类问题

我们从一个图像分类问题开始。 假设每次输入是一个2×2的灰度图像。 我们可以用一个标量表示每个像素值,每个图像对应四个特征x1,x2,x3,x4。 此外,假设每个图像属于类别“猫”“鸡”和“狗”中的一个。

接下来,我们要选择如何表示标签。 我们有两个明显的选择:最直接的想法是选择y∈{1,2,3}, 其中整数分别代表狗猫鸡{狗,猫,鸡}。 这是在计算机上存储此类信息的有效方法。 如果类别间有一些自然顺序, 比如说我们试图预测婴儿儿童青少年青年人中年人老年人{婴儿,儿童,青少年,青年人,中年人,老年人}, 那么将这个问题转变为回归问题,并且保留这种格式是有意义的。

但是一般的分类问题并不与类别之间的自然顺序有关。 幸运的是,统计学家很早以前就发明了一种表示分类数据的简单方法:独热编码(one-hot encoding)。 独热编码是一个向量,它的分量和类别一样多。 类别对应的分量设置为1,其他所有分量设置为0。 在我们的例子中,标签y将是一个三维向量, 其中(1,0,0)对应于“猫”、(0,1,0)对应于“鸡”、(0,0,1)对应于“狗”:

网络架构

为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。 为了解决线性模型的分类问题,我们需要和输出一样多的仿射函数(affine function)。 每个输出对应于它自己的仿射函数。 在我们的例子中,由于我们有4个特征和3个可能的输出类别, 我们将需要12个标量来表示权重(带下标的w), 3个标量来表示偏置(带下标的b)。 下面我们为每个输入计算三个未规范化的预测(logit):o1、o2和o3。

我们可以用神经网络图 图3.4.1来描述这个计算过程。 与线性回归一样,softmax回归也是一个单层神经网络。 由于计算每个输出o1、o2和o3取决于 所有输入x1、x2、x3和x4, 所以softmax回归的输出层也是全连接层。

为了更简洁地表达模型,我们仍然使用线性代数符号。 通过向量形式表达为o=Wx+b, 这是一种更适合数学和编写代码的形式。 由此,我们已经将所有权重放到一个3×4矩阵中。 对于给定数据样本的特征x, 我们的输出是由权重与输入特征进行矩阵-向量乘法再加上偏置b得到的。

全连接层的参数开销

正如我们将在后续章节中看到的,在深度学习中,全连接层无处不在。 然而,顾名思义,全连接层是“完全”连接的,可能有很多可学习的参数。 具体来说,对于任何具有d个输入和q个输出的全连接层, 参数开销为O(dq),这个数字在实践中可能高得令人望而却步。 幸运的是,将d个输入转换为q个输出的成本可以减少到O(dqn), 其中超参数n可以由我们灵活指定,以在实际应用中平衡参数节约和模型有效性 (Zhang et al., 2021)。

softmax运算

现在我们将优化参数以最大化观测数据的概率。 为了得到预测结果,我们将设置一个阈值,如选择具有最大概率的标签。

我们希望模型的输出y^j可以视为属于类j的概率, 然后选择具有最大输出值的类别argmaxjyj作为我们的预测。 例如,如果y^1、y^2和y^3分别为0.1、0.8和0.1, 那么我们预测的类别是2,在我们的例子中代表“鸡”。

然而我们能否将未规范化的预测o直接视作我们感兴趣的输出呢? 答案是否定的。 因为将线性层的输出直接视为概率时存在一些问题: 一方面,我们没有限制这些输出数字的总和为1。 另一方面,根据输入的不同,它们可以为负值。 这些违反了上一部分中所说的概率基本公理。

要将输出视为概率,我们必须保证在任何数据上的输出都是非负的且总和为1。 此外,我们需要一个训练的目标函数,来激励模型精准地估计概率。 例如, 在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。 这个属性叫做校准(calibration)。

社会科学家邓肯·卢斯于1959年在选择模型(choice model)的理论基础上 发明的softmax函数正是这样做的: softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持 可导的性质。 为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。 为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。如下式:

这里,对于所有的j总有0≤y^j≤1。 因此,y^可以视为一个正确的概率分布。 softmax运算不会改变未规范化的预测o之间的大小次序,只会确定分配给每个类别的概率。 因此,在预测过程中,我们仍然可以用下式来选择最有可能的类别。

尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。 因此,softmax回归是一个线性模型(linear model)。

小批量样本的矢量化

为了提高计算效率并且充分利用GPU,我们通常会对小批量样本的数据执行矢量计算。 假设我们读取了一个批量的样本X, 其中特征维度(输入数量)为d,批量大小为n。 此外,假设我们在输出中有q个类别。 那么小批量样本的特征为X∈Rn×d, 权重为W∈Rd×q, 偏置为b∈R1×q。 softmax回归的矢量计算表达式为:

相对于一次处理一个样本, 小批量样本的矢量化加快了和X和W的矩阵-向量乘法。 由于X中的每一行代表一个数据样本, 那么softmax运算可以按行(rowwise)执行: 对于O的每一行,我们先对所有项进行幂运算,然后通过求和对它们进行标准化。 在 (3.4.5)中, XW+b的求和会使用广播机制, 小批量的未规范化预测O和输出概率Y^ 都是形状为n×q的矩阵。

损失函数

接下来,我们需要一个损失函数来度量预测的效果。 我们将使用最大似然估计,这与在线性回归 中的方法相同。

对数似然

softmax函数给出了一个向量y^, 我们可以将其视为“对给定任意输入x的每个类的条件概率”。 例如,y^1=猫P(y=猫∣x)。 假设整个数据集{X,Y}具有n个样本, 其中索引i的样本由特征向量x(i)和独热标签向量y(i)组成。 我们可以将估计值与实际值进行比较:

根据最大似然估计,我们最大化P(Y∣X),相当于最小化负对数似然:

其中,对于任何标签y和模型预测y^,损失函数为:

在本节稍后的内容会讲到,y^中的损失函数 通常被称为交叉熵损失(cross-entropy loss)。 由于y是一个长度为q的独热编码向量, 所以除了一个项以外的所有项j都消失了。 由于所有y^j都是预测的概率,所以它们的对数永远不会大于0。 因此,如果正确地预测实际标签,即如果实际标签P(y∣x)=1, 则损失函数不能进一步最小化。 注意,这往往是不可能的。 例如,数据集中可能存在标签噪声(比如某些样本可能被误标), 或输入特征没有足够的信息来完美地对每一个样本分类。

softmax及其导数

由于softmax和相关的损失函数很常见, 因此我们需要更好地理解它的计算方式。 将全连接层代入损失中。 利用softmax的定义,我们得到:

考虑相对于任何未规范化的预测oj的导数,我们得到:

换句话说,导数是我们softmax模型分配的概率与实际发生的情况(由独热标签向量表示)之间的差异。 从这个意义上讲,这与我们在回归中看到的非常相似, 其中梯度是观测值y和估计值y^之间的差异。 这不是巧合,在任何指数族分布模型中 , 对数似然的梯度正是由此得出的。 这使梯度计算在实践中变得容易很多。

交叉熵损失

现在让我们考虑整个结果分布的情况,即观察到的不仅仅是一个结果。 对于标签y,我们可以使用与以前相同的表示形式。 唯一的区别是,我们现在用一个概率向量表示,如(0.1,0.2,0.7), 而不是仅包含二元项的向量(0,0,1)。 我们使用y^来定义损失l, 它是所有标签分布的预期损失值。 此损失称为交叉熵损失(cross-entropy loss),它是分类问题最常用的损失之一。 本节我们将通过介绍信息论基础来理解交叉熵损失。

信息论基础

信息论(information theory)涉及编码、解码、发送以及尽可能简洁地处理信息或数据。

信息论的核心思想是量化数据中的信息内容。 在信息论中,该数值被称为分布P的(entropy)。可以通过以下方程得到:

信息论的基本定理之一指出,为了对从分布p中随机抽取的数据进行编码, 我们至少需要H[P]“纳特(nat)”对其进行编码。 “纳特”相当于比特(bit),但是对数底为e而不是2。因此,一个纳特是1log⁡(2)≈1.44比特。

信息量

压缩与预测有什么关系呢? 想象一下,我们有一个要压缩的数据流。 如果我们很容易预测下一个数据,那么这个数据就很容易压缩。 为什么呢? 举一个极端的例子,假如数据流中的每个数据完全相同,这会是一个非常无聊的数据流。 由于它们总是相同的,我们总是知道下一个数据是什么。 所以,为了传递数据流的内容,我们不必传输任何信息。也就是说,“下一个数据是xx”这个事件毫无信息量。

但是,如果我们不能完全预测每一个事件,那么我们有时可能会感到“惊异”。 克劳德·香农决定用信息量log⁡1P(j)=−log⁡P(j)来量化这种惊异程度。 在观察一个事件j时,并赋予它(主观)概率P(j)。 当我们赋予一个事件较低的概率时,我们的惊异会更大,该事件的信息量也就更大。 在 (3.4.11)中定义的熵, 是当分配的概率真正匹配数据生成过程时的信息量的期望

重新审视交叉熵

如果把熵H(P)想象为“知道真实概率的人所经历的惊异程度”,那么什么是交叉熵? 交叉熵PQ,记为H(P,Q)。 我们可以把交叉熵想象为“主观概率为Q的观察者在看到根据概率P生成的数据时的预期惊异”。 当P=Q时,交叉熵达到最低。 在这种情况下,从P到Q的交叉熵是H(P,P)=H(P)。

简而言之,我们可以从两方面来考虑交叉熵分类目标: (i)最大化观测数据的似然;(ii)最小化传达标签所需的惊异。

模型预测和评估

在训练softmax回归模型后,给出任何样本特征,我们可以预测每个输出类别的概率。 通常我们使用预测概率最高的类别作为输出类别。 如果预测与实际类别(标签)一致,则预测是正确的。 在接下来的实验中,我们将使用精度(accuracy)来评估模型的性能。 精度等于正确预测数与预测总数之间的比率。

小结

  • softmax运算获取一个向量并将其映射为概率。

  • softmax回归适用于分类问题,它使用了softmax运算中输出类别的概率分布。

  • 交叉熵是一个衡量两个概率分布之间差异的很好的度量,它测量给定模型编码数据所需的比特数。


http://www.ppmy.cn/ops/142250.html

相关文章

java实现word转换pdf,word文件转换pdf文件,java如何将word转换pdf

1.java依赖 <dependency><groupId>com.aspose.cells</groupId><artifactId>aspose-cells</artifactId><version>8.5.2</version></dependency><dependency><groupId>cn.hutool</groupId><artifactId>…

树的遍历【东北大学oj数据结构7-3】C++

题面 二叉树是递归定义的。 二叉树 T 是定义在有限节点集上的结构 不包含节点&#xff0c;或者由三个不相交的节点集组成&#xff1a; 一个根节点。称为左子树的二叉树。称为右子树的二叉树。 您的任务是编写一个程序&#xff0c;该程序基于以下算法执行树遍历&#xff08;系…

【jvm】GC Roots有哪些

目录 1. 说明2. 虚拟机栈&#xff08;栈帧中的局部变量表&#xff09;中的引用3. 方法区中的类静态属性引用4. 本地方法栈&#xff08;Native方法栈&#xff09;中JNI&#xff08;Java Native Interface&#xff09;的引用5. 活跃线程&#xff08;Active Threads&#xff09;6.…

网络编程02

1. 回显服务器——UDP 一个 UDP 的客户端/服务器通信的程序——回显服务器&#xff08;echo server&#xff09;&#xff1a; 这个程序只是单纯地调用 Socket API 1&#xff09;让客户端给服务器发送一个请求&#xff0c;请求就是从控制台输入的字符串 2&#xff09;服务器…

Layer Norm 提升训练稳定性的原理:解决权重初始值敏感性问题(中英双语)

Layer Norm 提升训练稳定性的原理与数值模拟 在深度学习模型中&#xff0c;权重初始值对训练过程的稳定性影响极大&#xff0c;尤其在深层网络和长序列任务中&#xff0c;初始值不当会导致梯度消失或爆炸的问题&#xff0c;进而导致训练不稳定。Layer Normalization (Layer No…

开源分布式系统追踪-00-overview

分布式跟踪系列 CAT cat monitor 分布式监控 CAT-是什么&#xff1f; cat monitor-02-分布式监控 CAT埋点 cat monitor-03-深度剖析开源分布式监控CAT cat monitor-04-cat 服务端部署实战 cat monitor-05-cat 客户端集成实战 cat monitor-06-cat 消息存储 skywalking …

基于小程序实现地图定位、轨迹绘制、地图标点、快捷导航、唤醒导航APP、开箱即用

目录 前言研究背景与意义研究目标与内容研究方法与技术路线小程序地图组件介绍定位技术与原理轨迹绘制技术地图标注与标记功能地图定位与轨迹绘制功能实现定位功能设计与实现获取用户当前位置总结说明代码块前言 研究背景与意义 地图定位和轨迹追踪作为智能手机中常见的功能之…

【JAVA】Java项目实战—Java EE项目:企业资源规划(ERP)系统

在企业管理中&#xff0c;企业资源规划&#xff08;ERP&#xff09;系统是不可或缺的工具。它能够帮助企业高效管理各种资源&#xff0c;包括人力资源、财务资源和库存等。Java作为一种成熟的编程语言&#xff0c;因其跨平台特性、强大的生态系统以及良好的社区支持&#xff0c…