零基础转行自学大模型路线规划(附快速学习路线图)

ops/2025/1/16 4:59:26/

每一波浪潮的到来,都意味一片无人占领的蓝海,也意味着众多新成长起来的巨头,还意味着什么?大量的技术人员需求,供不应求的开发市场,以及从业者的高薪与众多的机会。

我们最常做的事情是目送着上一次浪潮的余波远去,感叹自己生不逢时,却没有意识到,下一波浪潮已经到了我们脚下。

没错,我们说的就是大模型,正在被无数人所接受的AI大模型

身在IT圈中的人,应该都有着直观的认识。目前国内知名的互联网企业无一不在建立自己的大模型技术团队,以期用AI技术,提升产品的体验和智能化程度。

但与此同时,各种不明觉厉的名词也吓退了很多非科班出身的开发者。什么叫卷积神经网络?深度学习?算法?什么叫凸优化?是不是还要回去重读高数,线代,概率?那么一大堆公式,感觉完全看不懂啊?听说没个名校博士出身都搞不了这个?

在很久以前的一篇知乎回答中提过,作为开发人员,AI领域界在我看来会分成这么几个层次:

1. 学术研究者

他们的工作是从理论上诠释机器学习的各个方面,试图找出“这样设计模型/参数为什么效果更好”,并且为其他从业者提供更优秀的模型,甚至将理论研究向前推进一步。能够做到这一步的人,可以说凤毛麟角,天赋是绕不过去的大山,机遇和努力也缺一不可。

2. 算法改进者

他们也许无法回答出“我的方法为什么work”,也许没有Hinton,LeCun那样足以载入史册的重大成果,但是却能根据经验和一些奇思妙想,将现有的模型玩出更好的效果,或者提出一些改进的模型。这些人通常都是各个机器学习巨头公司的中坚力量或者成长中的独角兽,使用什么模型对他们来讲也不是问题,根据所处的环境,通常都有固定的几个选择。在这个层面,insight和idea才是重要的东西,各种工具的区别,影响真的没那么大。可能会让一个结果早得到或者晚得到几天或者几周,却不可能影响“有没有成果”。

3. 工业实现者

这些人基本上不会在算法领域涉入太深,也就是了解一下各个算法的实现,各个模型的结构。他们更多地是根据论文去复现优秀的成果,或者使用其他人复现出来的成果,并且试图去在工业上应用它。

对于大部分IT人来说,做到第三类,也就是工业实现这个层面,已经足够好了,至少,我们已经有了亲身参与这个大时代的机会,仅就这一点来说,便已经击败了全国99%的人。

不光是普通程序猿这么说,文艺的程序猿和……额,高大上的程序猿也都这么说。

我说,呵呵。

答案只有一个:Just Do IT(去搞IT吧,少年)

成为大模型算法工程师,在我看来,要把机器学习、深度学习和基础知识掌握好,就可以入行拼搏了!另外,理论必须要结合项目实战:因为作为程序员,读十遍书不如跑一遍程序,与其花费大量的时间去啃书本,不如亲手完成自己的程序并运行它。我们在写出代码的同时,就会了解到自己还有哪些地方不够清楚,从而针对性地学习

那么该如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。


http://www.ppmy.cn/ops/109649.html

相关文章

c++修炼之路之AVL树与红黑树

目录 一:AVL树 1.AVL树的概念 2.AVL树插入数据后平衡因子及更新的情况 3.AVL树节点的定义 4.AVL树的插入及旋转 二:红黑树 1.红黑树的概念及性质 2.红黑树节点的定义 3.红黑树的插入操作情况 4.红黑树与AVL树的比较 接下来的日子会顺顺利利…

【AbMole】凯氏定氮法测定氨基酸含量

凯氏定氮法的原理是基于氨的定量反应,其中有机物样品中的氮通过消化和蒸馏步骤转化为氨气,并通过滴定进行量化测定。 由于氮在许多生物和环境样品中广泛存在,凯氏定氮法成为测定样品中氮含量的常用方法。往样品中加入浓硫酸和催化剂&#xf…

HarmonyOS】ArkTS学习之基于TextTimer的简易计时器的elapsedTime最小时间单位问题

本文旨在纪录自己对TextTimer使用过程的疑惑问题 我在查看教程时候,发现很多博客在onTimer(event: (utc: number, elapsedTime: number) > void) 这里提到elapsedTime:计时器经过的时间,单位为毫秒。我不清楚是否为版本问题。 在我查看ver…

Java项目: 基于SpringBoot+mybatis+maven大学生就业招聘系统(含源码+数据库+毕业论文)

一、项目简介 本项目是一套基于SpringBootmybatismaven大学生就业招聘系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作…

快人一步迅为LPDDR5版本瑞芯微RK3588核心板升级了

性能强--iTOP-3588开发板采用瑞芯微RK3588处理器,是全新一代ALoT高端应用芯片,采用8nm LP制程,搭载八核64位CPU,四核Cortex-A76和四核Cortex-A55架构,主频高达2.4GHZ,8GB内存,32GB EMMC。四核心…

spring容器创建bean过程中使用到的几个factory

文章目录 前述BeanFactoryFactoryBeanObjectFactory 前述 spring我们可以理解为一个帮我们管理bean的容器,使用spring框架之前创建bean都是通过new的方式,使用spring框架之后, 我们只需要告诉spring框架我们有那些bean,它会帮我们…

比较差异 图片 视频

目录 两张图片像素差: 深度图和rgb图对齐 视频比较差异: 结构化(1行)贴到深度图上(5行): 两张图片像素差: diffnp.clip(np.abs( img_mask.astype(np.int16))-img.astype(np.int16), 0, 255).astype(np.uint8) 深度图和rgb图对…

场景感知技术带您重塑未来生活的新篇章

在科技日新月异的今天,场景感知技术正以前所未有的速度渗透到我们生活的方方面面,成为连接物理世界与数字世界的桥梁,重塑着人类的认知方式与生活体验。这项技术通过综合运用传感器、大数据分析、人工智能等前沿科技,实现对周围环…