2024数学建模国赛B题代码

ops/2024/11/15 0:45:37/

B题已经完成模型代码!详情查看文末名片

问题1:可以考虑使用统计学中的“样本量估算”方法,使用二项分布或正态近似来决定最少的样本量,并通过假设检验(如单侧检验)在95%和90%置信度下进行判断。

import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt# 参数设置
p_0 = 0.10  # 标称次品率(供应商声称)
confidence_level_95 = 0.95  # 问题 (1) 的置信水平
confidence_level_90 = 0.90  # 问题 (2) 的置信水平
margin_of_error = 0.05  # 误差限# 计算Z值
Z_95 = stats.norm.ppf((1 + confidence_level_95) / 2)  # 95%置信区间
Z_90 = stats.norm.ppf((1 + confidence_level_90) / 2)  # 90%置信区间# 样本量估算公式
def sample_size(Z, p, E):"""根据Z值,次品率p,误差限E计算最少样本量"""return (Z**2 * p * (1 - p)) / (E**2)# 计算95%和90%置信度下的最少样本量
n_95 = sample_size(Z_95, p_0, margin_of_error)
n_90 = sample_size(Z_90, p_0, margin_of_error)print(f"95%置信水平下的最少样本量: {int(np.ceil(n_95))}")
print(f"90%置信水平下的最少样本量: {int(np.ceil(n_90))}")# 抽样假设检验
def hypothesis_test(p_0, n, x, confidence_level):"""根据样本量n,抽样检测到的次品数量x,以及置信水平,计算置信区间p_0: 标称次品率n: 样本量x: 次品数量confidence_level: 置信水平"""p_hat = x / n  # 样本次品率Z = stats.norm.ppf((1 + confidence_level) / 2)margin = Z * np.sqrt((p_hat * (1 - p_hat)) / n)lower_bound = p_hat - marginupper_bound = p_hat + marginreturn lower_bound, upper_bound# 模拟抽样检测
np.random.seed(42)  # 固定随机种子
n_sample = int(np.ceil(n_95))  # 使用95%置信水平下的样本量
true_defect_rate = 0.12  # 假设实际次品率为12%
sample_defects = np.random.binomial(n_sample, true_defect_rate)  # 抽样检测出的次品数量# 进行95%置信水平的假设检验
lower_95, upper_95 = hypothesis_test(p_0, n_sample, sample_defects, confidence_level_95)
# 进行90%置信水平的假设检验
lower_90, upper_90 = hypothesis_test(p_0, n_sample, sample_defects, confidence_level_90)# 打印检测结果
print(f"抽样检测得到的次品数量: {sample_defects}/{n_sample}")
print(f"95%置信区间: [{lower_95:.3f}, {upper_95:.3f}]")
print(f"90%置信区间: [{lower_90:.3f}, {upper_90:.3f}]")
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

问题2:基于零配件的次品率和成本数据,建立一个决策树模型或者动态规划模型,分析在每个阶段是否检测、是否拆解能使企业的总成本最小化。重点在于计算检测成本、拆解费用、调换损失等对整体利润的影响。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import font_manager# 使用SimHei字体来支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 或者你系统支持的中文字体
plt.rcParams['axes.unicode_minus'] = False# 定义输入参数
# 情况1的数据
p1_defect_rate = 0.10  # 零配件1的次品率
p2_defect_rate = 0.10  # 零配件2的次品率
product_defect_rate = 0.10  # 成品的次品率
purchase_cost1 = 4  # 零配件1的购买单价
purchase_cost2 = 18  # 零配件2的购买单价
assembly_cost = 6  # 装配成本
market_price = 56  # 市场售价
replacement_loss = 6  # 调换损失
dismantling_cost = 5  # 拆解费用# 检测成本
detection_cost1 = 2  # 零配件1的检测成本
detection_cost2 = 3  # 零配件2的检测成本
product_detection_cost = 3  # 成品的检测成本# 决策1: 是否对零配件进行检测
def part_detection_decision(p_defect, detection_cost, purchase_cost):"""决定是否对零配件进行检测,基于检测成本和次品率如果检测成本低于购买并丢弃次品的期望损失,则选择检测"""expected_defect_loss = p_defect * purchase_cost  # 不检测时的期望损失if detection_cost < expected_defect_loss:return True  # 检测else:return False  # 不检测# 决策2: 是否对成品进行检测
def product_detection_decision(p_defect, detection_cost, market_price, replacement_loss):"""决定是否对成品进行检测,基于检测成本和退货损失如果检测成本低于次品退货的期望损失,则选择检测"""
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

问题3:扩展模型,考虑多道工序的情形。可以将每道工序看作一个子系统,递归地分析各个阶段的次品率对最终成品质量的影响,并提出最优的检测方案。

import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 中文字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 决策函数:是否检测零配件
def part_detection_decision(p_defect, detection_cost, purchase_cost):"""根据次品率和检测成本,决定是否检测零配件。"""expected_defect_loss = p_defect * purchase_cost  # 不检测的期望次品损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于次品损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 决策函数:是否检测半成品/成品
def product_detection_decision(p_defect, detection_cost, replacement_loss):"""根据次品率和检测成本,决定是否检测半成品或成品。"""expected_defect_loss = p_defect * replacement_loss  # 不检测的期望次品损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于次品损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 工序中次品率的递进计算
def calculate_defect_rate(p_list):"""计算多个零配件组合后的次品率(使用联合概率公式)。p_list: 各零配件的次品率列表"""combined_defect_rate = 1 - np.prod([1 - p for p in p_list])  # 联合次品率return combined_defect_rate# 计算总成本,并输出决策依据
def total_cost(steps, dismantling_cost, replacement_loss):"""计算总期望成本,并输出决策依据。"""total_parts_cost = 0total_assembly_cost = 0total_product_cost = 0previous_defect_rate = 0  # 初始时为0,没有前序工序
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

问题4:结合问题1的抽样检测方法,重新优化问题2和问题3中的方案,确保抽样检测得到的次品率可以指导后续的决策。

import numpy as np
import scipy.stats as stats# 抽样次品率估计函数
def estimate_defect_rate(sample_size, defect_count):"""使用抽样检测方法估算次品率。sample_size: 样本量defect_count: 检测到的次品数"""return defect_count / sample_size# 决策函数:是否检测零配件
def part_detection_decision(p_defect, detection_cost, purchase_cost):"""根据估算次品率和检测成本,决定是否检测零配件。"""expected_defect_loss = p_defect * purchase_cost  # 不检测的期望次品损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于次品损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 决策函数:是否检测成品
def product_detection_decision(p_defect, detection_cost, replacement_loss):"""根据估算次品率和检测成本,决定是否检测成品。p_defect: 成品的次品率detection_cost: 检测成品的成本replacement_loss: 成品退货的损失"""expected_defect_loss = p_defect * replacement_loss  # 不检测的期望退货损失detect = detection_cost < expected_defect_loss  # 如果检测成本低于退货损失,则检测decision = "检测" if detect else "不检测"return detect, decision# 工序中次品率的递进计算
def calculate_defect_rate(p_list):"""计算多个零配件组合后的次品率(使用联合概率公式)。
完整代码:https://mbd.pub/o/bread/mbd-ZpqZl55p

http://www.ppmy.cn/ops/108935.html

相关文章

LLM的指令微调新发现:不掩蔽指令

最近看到了一篇挺有意思的论文&#xff0c;叫《指令掩蔽下的指令调整》&#xff08;Instruction Tuning With Loss Over Instructions&#xff0c;https://arxiv.org/abs/2405.14394) 。 这篇论文里&#xff0c;研究者们对一个在指令微调中大家普遍接受的做法提出了疑问&#…

Qt-QWidget的toolTip属性(19)

目录 描述 相关API 使用 描述 就是一个提示窗口 相关API 也有获取的&#xff0c;但是我们通常只会使用设置的接口&#xff0c;获取这个接口很少使用&#xff0c;毕竟提示都是设置进去的 单位是毫秒 使用 我们新建一个项目&#xff0c;当然我们也可以直接在Qt Designer里…

\uline命令中包含\cite

\uline命令不支持大括号的参数命令的解决办法 \uline命令中包含\cite会报以下错误&#xff1a; Extra }, or forgotten \endgroup. Extra }, or forgotten \endgroup. Missing } inserted. 解决办法&#xff1a; 1、通过 \mbox{} 将 \cite 命令封装 \uline{This is an und…

单例模式对比:静态内部类 vs. 饿汉式

单例模式是一种设计模式&#xff0c;旨在确保一个类只有一个实例&#xff0c;并提供全局访问点。Java 中有多种实现单例模式的方式&#xff0c;其中静态内部类实现和饿汉式实现是两种常见的方法。本文将对这两种单例模式进行详细对比&#xff0c;说明它们在延迟加载方面的区别&…

Linux网络——从《计算机网络》到网络编程

文章目录 从《计算机网络》到网络编程从计算机到计算机网络解决问题网络与计算机系统计算机网络的传输流程IP地址与MAC地址 从《计算机网络》到网络编程 科班的同学大多学过计算机网络&#xff0c;而非科班的同学也多多少少听说过一些 计算机网络体系十分繁杂且精妙&#xff…

Qt-QWidget的focusPolicy属性(20)

目录 描述 相关API 使用 描述 这里引入了焦点的概念&#xff0c;这个很重要&#xff0c;也是伴随后面介绍中的一个很重要的概念 拿魔兽世界来举例&#xff0c;如下我们在操作兵种的时候&#xff0c;需要先选中单位&#xff0c;然后才能对这些单位进行命令的下达 这一点在笔…

framebuffer帧缓存

framebuffer:帧缓冲&#xff0c;帧缓存 Linux内核为显示提供的一套应用程序接口。&#xff08;驱动内核支持&#xff09; framebuffer本质上是一块显示缓存&#xff0c;往显示缓存中写入特定格式的数据就意味着向屏幕输出内容。framebuffer驱动程序控制LCD显示设备&#xff0…

【专题】2024年8月医药行业报告合集汇总PDF分享(附原数据表)

原文链接&#xff1a;https://tecdat.cn/?p37621 在科技飞速发展的当今时代&#xff0c;医药行业作为关乎人类生命健康的重要领域&#xff0c;正处于前所未有的变革浪潮之中。数智医疗服务的崛起&#xff0c;为医疗模式带来了全新的转变&#xff0c;开启了医疗服务的新时代。…