目录
一、环境
1.1getExecutionEnvironment
1.2createLocalEnvironment
1.3createRemoteEnvironment
二、从集合中读取数据
三、从文件中读取数据
四、从KafKa中读取数据
1.导入依赖
2.启动KafKa
3.java代码
一、环境
1.1getExecutionEnvironment
创建一个执行环境,表示当前执行程序的上下文。如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。
#批处理环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();#流处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
设置并行度:如果没有设置并行度,会以flink-conf.yaml中的配置为准,默认为1
//设置并行度为8env.setParallelism(8);
1.2createLocalEnvironment
返回本地执行环境,需要在调用时指定默认的并行度
LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment(1);
1.3createRemoteEnvironment
返回集群执行环境,将Jar提交到远程服务器。需要在调用时指定JobManager的IP和端口号,并指定要在集群中运行的Jar包
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("IP",端口号,jar包路径)
二、从集合中读取数据
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Arrays;/*** @author : Ashiamd email: ashiamd@foxmail.com* @date : 2021/1/31 5:13 PM* 测试Flink从集合中获取数据*/
public class SourceTest1_Collection {public static void main(String[] args) throws Exception {// 创建执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 设置env并行度1,使得整个任务抢占同一个线程执行env.setParallelism(1);// Source: 从集合Collection中获取数据DataStream<SensorReading> dataStream = env.fromCollection(Arrays.asList(new SensorReading("sensor_1", 1547718199L, 35.8),new SensorReading("sensor_6", 1547718201L, 15.4),new SensorReading("sensor_7", 1547718202L, 6.7),new SensorReading("sensor_10", 1547718205L, 38.1)));DataStream<Integer> intStream = env.fromElements(1,2,3,4,5,6,7,8,9);// 打印输出dataStream.print("SENSOR");intStream.print("INT");// 执行env.execute("JobName");}}
三、从文件中读取数据
文件由自己创建一个txt文件
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;/*** @author : Ashiamd email: ashiamd@foxmail.com* @date : 2021/1/31 5:26 PM* Flink从文件中获取数据*/
public class SourceTest2_File {public static void main(String[] args) throws Exception {// 创建执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 使得任务抢占同一个线程env.setParallelism(1);// 从文件中获取数据输出DataStream<String> dataStream = env.readTextFile("/tmp/Flink_Tutorial/src/main/resources/sensor.txt");dataStream.print();env.execute();}
}
四、从KafKa中读取数据
1.导入依赖
<dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.11</version><scope>test</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>1.10.1</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>1.10.1</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>1.10.1</version></dependency><!-- kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.11</artifactId><version>1.12.1</version></dependency></dependencies>
2.启动KafKa
启动Zookeeper
./bin/zookeeper-server-start.sh [config/zookeeper.properties]
启动KafKa服务
./bin/kafka-server-start.sh -daemon ./config/server.properties
启动KafKa生产者
./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic sensor
3.java代码
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties;/*** @author : Ashiamd email: ashiamd@foxmail.com* @date : 2021/1/31 5:44 PM*/
public class SourceTest3_Kafka {public static void main(String[] args) throws Exception {// 创建执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 设置并行度1env.setParallelism(1);Properties properties = new Properties();//监听的kafka端口properties.setProperty("bootstrap.servers", "localhost:9092");// 下面这些次要参数properties.setProperty("group.id", "consumer-group");properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");properties.setProperty("auto.offset.reset", "latest");// flink添加外部数据源DataStream<String> dataStream = env.addSource(new FlinkKafkaConsumer<String>("sensor", new SimpleStringSchema(),properties));// 打印输出dataStream.print();env.execute();}
}