一、背景
自党的十九届四中全会将数据列为生产要素以来,数据的开放共享、交换流通成为大数据产业发展的重点。快速发展的隐私计算等数据流通新技术为产业“破局”提供了关键思路,成为建设和完善数据要素市场的重要抓手。隐私计算(Privacy-preserving computation)是指在保证数据提供方不泄露原始数据的前提下,对数据进行分析计算的一系列信息技术,实现数据在流通与融合过程中的“可用不可见”。
隐私计算技术作为保障数据安全流通的有效方式,乘时乘势高速发展,已逐渐成为促进数据要素跨域流通和应用的核心技术,广泛应用于金融、政务、医疗、能源、制造等诸多领域。
2020年4月, 《工业和信息化部关于工业大数据发展的指导意见》提出,激发工业数据市场活力,支持开展数据流动关键技术攻关,建设可信的工业数据流方安全计算、区块链、隐私计算、数据沙箱等技术模式,构建数据可信流通环境,提高数据流通效率。2022年10月国务院办公厅印发的《全国一体化政务大数据体系建设指南》提出探索利用核查、模型分析、隐私计算等多种手段,有效支撑地方数据资源深度开发利用。
对隐私计算产业来说,在政策利好的持续推动下,行业市场发展与技术不断更新,技术体系不断完善,行业标准日趋统一,应用场景逐渐丰富,隐私计算产业将持续面临着良好的发展环境。
二、隐私计算发展阶段
隐私计算技术可以追溯到1949年由香农开启的现代密码学时代,之后其内涵、特征及代表技术不断演进,融合了密码学、人工智能、计算机科学以及安全硬件等众多领域技术。直到2001年,国外正式提出“隐私增强技术”(Privacy Enhan