向AI转型的程序员都关注了这个号????????????
机器学习AI算法工程 公众号:datayx
CVPR 2020 共收录 1470篇文章,算法主要领域:图像与视频处理,图像分类&检测&分割、视觉目标跟踪、视频内容分析、人体姿态估计、模型加速、网络架构搜索(NAS)、生成对抗(GAN)、光学字符识别(OCR)、人脸识别、三维重建等方向。
# 图像处理
1. Deep Image Harmonization via Domain Verification
论文:Deep Image Harmonization via Domain Verification
代码:bcmi/Image_Harmonization_Datasets
2. Learning to Shade Hand-drawn Sketches
论文:Learning to Shade Hand-drawn Sketches
3. Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
论文:Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
4. Single Image Reflection Removal through Cascaded Refinement
论文:arxiv.org/abs/1911.0663
5. RoutedFusion: Learning Real-time Depth Map Fusion
论文:arxiv.org/pdf/2001.0438
# 图像分类
1. Towards Robust Image Classification Using Sequential Attention Models
论文:Towards Robust Image Classification Using Sequential Attention Models
2. Self-training with Noisy Student improves ImageNet classification
论文:Self-training with Noisy Student improves ImageNet classification
3. Image Matching across Wide Baselines: From Paper to Practice
论文:Image Matching across Wide Baselines: From Paper to Practice
4. Improved Few-Shot Visual Classification
论文:arxiv.org/pdf/1912.0343
5. A General and Adaptive Robust Loss Function
论文:A General and Adaptive Robust Loss Function
6. Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
论文:Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
# 目标检测和分割
![](images.studyai.com/blog)
1. Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
论文:Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
2. Bridng the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
论文:arxiv.org/abs/1912.0242
代码:sfzhang15/ATSS
3. Semi-Supervised Semantic Image Segmentation with Self-correcting Networks
论文:Semi-Supervised Semantic Image Segmentation with Self-correcting Networks
4. Deep Snake for Real-Time Instance Segmentation
论文:Deep Snake for Real-Time Instance Segmentation
5. SketchGCN: Semantic Sketch Segmentation with Graph Convolutional Networks
论文:SketchGCN: Semantic Sketch Segmentation with Graph Convolutional Networks
6. xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation
论文:xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation
7. CenterMask : Real-Time Anchor-Free Instance Segmentation
论文:CenterMask : Real-Time Anchor-Free Instance Segmentation
代码:youngwanLEE/CenterMask
8. PolarMask: Single Shot Instance Segmentation with Polar Representation
论文:PolarMask: Single Shot Instance Segmentation with Polar Representation
代码:xieenze/PolarMask
9. BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation
论文:BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation
# 视觉目标跟踪
![](images.studyai.com/blog)
1. ROAM: Recurrently Optimizing Tracking Model
论文:ROAM: Recurrently Optimizing Tracking Model
# 视频内容分析(理解)
![](images.studyai.com/blog)
1. Hierarchical Conditional Relation Networks for Video Question Answering
论文:Hierarchical Conditional Relation Networks for Video Question Answering
2. Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications
论文:Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications
代码:bbrattoli/ZeroShotVideoClassification
3. Action Modifiers:Learning from Adverbs in Instructional Video
论文:Action Modifiers: Learning from Adverbs in Instructional Videos
4. Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning
论文:Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning
5. Blurry Video Frame Interpolation
论文:Blurry Video Frame Interpolation
6. Object Relational Graph with Teacher-Recommended Learning for Video Captioning
论文:Object Relational Graph with Teacher-Recommended Learning for Video Captioning
7. Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs
论文:Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs
8. Learning Representations by Predicting Bags of Visual Words
论文:Learning Representations by Predicting Bags of Visual Words
9. Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
论文:Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
# 人体关键点检测和姿态估计
![](images.studyai.com/blog)
1. Distribution-Aware Coordinate Representation for Human Pose Estimation
论文:Distribution-Aware Coordinate Representation for Human Pose Estimation
代码:ilovepose/DarkPose
2. VIBE: Video Inference for Human Body Pose and Shape Estimation
论文:VIBE: Video Inference for Human Body Pose and Shape Estimation
代码:mkocabas/VIBE
3. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation
论文:The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation
4. Optimal least-squares solution to the hand-eye calibration problem
论文:Optimal least-squares solution to the hand-eye calibration problem
5. Distribution Aware Coordinate Representation for Human Pose Estimation
论文:Distribution-Aware Coordinate Representation for Human Pose Estimation
6. D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry
论文:D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry
7. Multi-Modal Domain Adaptation for Fine-Grained Action Recognition
论文:Multi-Modal Domain Adaptation for Fine-Grained Action Recognition
8. PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation
论文:arxiv.org/abs/1911.0423
9. 4D Association Graph for Realtime Multi-person Motion Capture Using Multiple Video Cameras
论文:4D Association Graph for Realtime Multi-person Motion Capture Using Multiple Video Cameras
# 模型轻量化和加速
1. GPU-Accelerated Mobile Multi-view Style Transfer
论文:GPU-Accelerated Mobile Multi-view Style Transfer
# 神经网络架构设计和搜索NAS
![](images.studyai.com/blog)
1. GhostNet: More Features from Cheap Operations
论文:GhostNet: More Features from Cheap Operations
代码:huawei-noah/ghostnet
2. CARS: Contunuous Evolution for Efficient Neural Architecture Search
论文:arxiv.org/pdf/1909.0497
代码:huawei-noah/CARS
3. Visual Commonsense R-CNN
论文:arxiv.org/abs/2002.1220
4. Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral
论文:Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
5. AdderNet: Do We Really Need Multiplications in Deep Learning?
论文:arxiv.org/pdf/1912.1320
6. Filter Grafting for Deep Neural Networks
论文:arxiv.org/pdf/2001.0586
# 生成对抗GAN
![](images.studyai.com/blog)
1. Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models
论文:Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models
代码:giannisdaras/ylg
2. MSG-GAN: Multi-Scale Gradient GAN for Stable Image Synthesis
论文:MSG-GAN: Multi-Scale Gradient GAN for Stable Image Synthesis
3. Robust Design of Deep Neural Networks against Adversarial Attacks based on Lyapunov Theory
论文:Robust Design of Deep Neural Networks against Adversarial Attacks based on Lyapunov Theory
# 三维点云&3D重建
![](images.studyai.com/blog)
1. PointAugment: an Auto-Augmentation Framework for Point Cloud Classification
论文:PointAugment: an Auto-Augmentation Framework for Point Cloud Classification
代码:liruihui/PointAugment
2. PF-Net: Point Fractal Network for 3D Point Cloud Completion
论文:PF-Net: Point Fractal Network for 3D Point Cloud Completion
3. Learning multiview 3D point cloud registration
论文:Learning multiview 3D point cloud registration
4. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image
论文:Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image
5. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks
论文:arxiv.org/pdf/1911.1192
6. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
论文:RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
7. C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds
论文:C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds
8. Representations, Metrics and Statistics For Shape Analysis of Elastic Graphs
论文:Representations, Metrics and Statistics For Shape Analysis of Elastic Graphs
9. Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
论文:Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
# 光学字符识别OCR
1. ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
论文:ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
代码:github.com/Yuliang-Liu/
# 迁移学习
![](images.studyai.com/blog)
1. Meta-Transfer Learning for Zero-Shot Super-Resolution
论文:Meta-Transfer Learning for Zero-Shot Super-Resolution
2. Transferring Dense Pose to Proximal Animal Classes
论文:Transferring Dense Pose to Proximal Animal Classes
# 弱监督 & 无监督学习
1. Unsupervised Reinforcement Learning of Transferable Meta-Skills for Embodied Navigation
论文:Unsupervised Reinforcement Learning of Transferable Meta-Skills for Embodied Navigation
2. Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
论文:Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
3. Rethinking the Route Towards Weakly Supervised Object Localization
论文:Rethinking the Route Towards Weakly Supervised Object Localization
4. NestedVAE: Isolating Common Factors via Weak Supervision
论文:NestedVAE: Isolating Common Factors via Weak Supervision
# 人脸识别
1. Towards Universal Representation Learning for Deep Face Recognition
论文:Towards Universal Representation Learning for Deep Face Recognition
2. Suppressing Uncertainties for Large-Scale Facial Expression Recognition
论文:Suppressing Uncertainties for Large-Scale Facial Expression Recognition
代码:kaiwang960112/Self-Cure-Network
3. Face X-ray for More General Face Forgery Detection
论文:arxiv.org/pdf/1912.1345
# 图神经网络GNN
1. Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
论文:Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
2. Bundle Adjustment on a Graph Processor
论文:Bundle Adjustment on a Graph Processor
代码:joeaortiz/gbp
# 视觉 & 语言 混合任务研究
1. Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training
论文:Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training
代码:weituo12321/PREVALENT
2. 12-in-1: Multi-Task Vision and Language Representation Learning
论文:12-in-1: Multi-Task Vision and Language Representation Learning
3. Hierarchical Conditional Relation Networks for Video Question Answering
论文:Hierarchical Conditional Relation Networks for Video Question Answering
# 其他问题研究
1. What it Thinks is Important is Important: Robustness Transfers through Input Gradients
论文:arxiv.org/abs/1912.0569
2. Holistically-Attracted Wireframe Parsing
论文:Holistically-Attracted Wireframe Parsing
3. Attntive Context Normalization for Robust Permutation-Equivariant Learning
论文:Attentive Context Normalization for Robust Permutation-Equivariant Learning
5. ClusterFit: Improving Generalization of Visual Representations
论文:ClusterFit: Improving Generalization of Visual Representations
6. Learning in the Frequency Domain
论文:Learning in the Frequency Domain
7. A Characteristic Function Approach to Deep Implicit Generative Modeling
论文:A Characteristic Function Approach to Deep Implicit Generative Modeling
8. Auto-Encoding Twin-Bottleneck Hashing
论文:Auto-Encoding Twin-Bottleneck Hashing
CVPR 2020 所有文本图像(text)相关论文,主要分为手写文本和场景文本两大方向,总计16篇,对文献进行了细致的分类,大部分论文是围绕识别问题的研究。
方向包括:
1)场景文本检测(Scene Text Detection),从街景等场景文本中检测文本的位置,2 篇文献均为不规则任意形状文本的检测;
2)场景文本识别(Scene Text Recognition),对场景文本检测得到的结果进行识别,共 4 篇文章;
3)手写文本识别(Handwritten Text Recognition),2 篇文章;
4)场景文本端到端识别(Scene Text Spotting),1 篇文章,即华南理工大学和阿德莱德大学学者提出的实时 ABCNet 算法,很吸引人,已经开源;
5)手写文本生成(Handwritten Text Generation),为了增加手写文本的训练样本(感觉也可以用来“写作业”手动滑稽”),1 篇文章;
6)场景文本合成(Scene Text Synthesis),为了增加场景文本的训练样本,1 篇文章,出自旷视科技,UnrealText用渲染引擎生成逼真场景文本;
7)文本图像的数据增广,用于手写和场景文本识别算法的训练,1 篇文章;
8)场景文本编辑(Scene Text Editor),对场景文本图像中的文字进行替换;
9)碎纸文档重建,用于刑侦领域的文档被破坏成碎片后的重建,1篇;
10)文本风格迁移,1篇;
11)场景文本识别的对抗攻击研究,1篇;
12)笔迹鉴定,1篇。
值得一提的,16篇文章中10篇已经开源或者准备开源,感谢这些开发者~
已经开源或者即将开源的论文,把代码地址也附上了。
大家可以在:
http://openaccess.thecvf.com/CVPR2020.py
按照题目下载这些论文。
场景文本检测
深度关系推理图网络用于任意形状文本检测
[1].Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection
作者 | Shi-Xue Zhang, Xiaobin Zhu, Jie-Bo Hou, Chang Liu, Chun Yang, Hongfa Wang, Xu-Cheng Yin
单位 | 北京科技大学;中国科学技术大学人工智能联合实验室;腾讯科技(深圳)
代码 | https://github.com/GXYM/DRRG
解读 | https://blog.csdn.net/SpicyCoder/article/details/105072570
[2].ContourNet: Taking a Further Step Toward Accurate Arbitrary-Shaped Scene Text Detection
作者 | Yuxin Wang, Hongtao Xie, Zheng-Jun Zha, Mengting Xing, Zilong Fu, Yongdong Zhang
单位 | 中国科学技术大学
代码 | https://github.com/wangyuxin87/ContourNet
解读 | https://zhuanlan.zhihu.com/p/135399747
场景文本识别
论场景文本识别中的词汇依赖性
[3].On Vocabulary Reliance in Scene Text Recognition
作者 | Zhaoyi Wan, Jielei Zhang, Liang Zhang, Jiebo Luo, Cong Yao
单位 | 旷视;中国矿业大学;罗切斯特大学
[4].SCATTER: Selective Context Attentional Scene Text Recognizer
作者 | Ron Litman, Oron Anschel, Shahar Tsiper, Roee Litman, Shai Mazor, R. Manmatha
单位 | Amazon Web Services
语义推理网络,用于场景文本的精确识别
[5].Towards Accurate Scene Text Recognition With Semantic Reasoning Networks
作者 | Deli Yu, Xuan Li, Chengquan Zhang, Tao Liu, Junyu Han, Jingtuo Liu, Errui Ding
单位 | 国科大;百度;中科院
代码 | https://github.com/chenjun2hao/SRN.pytorch
语义增强的编解码框架,用于识别低质量图像(模糊、光照不均、字符不完整等)场景文本
[6].SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition
作者 | Zhi Qiao, Yu Zhou, Dongbao Yang, Yucan Zhou, Weiping Wang
单位 | 中科院;国科大
代码 | https://github.com/Pay20Y/SEED(即将)
手写文本识别
[7].OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page Text Recognition by learning to unfold
作者 | Mohamed Yousef, Tom E. Bishop
单位 | Intuition Machines, Inc
代码 | https://github.com/IntuitionMachines/OrigamiNet
Scene Text Spotting
实时端到端场景文本识别
[8].ABCNet: Real-Time Scene Text Spotting With Adaptive Bezier-Curve Network
作者 | Yuliang Liu, Hao Chen, Chunhua Shen, Tong He, Lianwen Jin, Liangwei Wang
单位 | 华南理工大学;阿德莱德大学;
代码 | https://github.com/Yuliang-Liu/bezier\_curve\_text\_spotting
备注 | CVPR 2020 Oral
解读 | https://zhuanlan.zhihu.com/p/146276834
手写文本生成
半监督变长手写文本生成,增加文本数据集,提高识别算法精度
[9].ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text Generation
作者 | Sharon Fogel, Hadar Averbuch-Elor, Sarel Cohen, Shai Mazor, Roee Litman
单位 | 以色列国,Amazon Rekognition;康奈尔大学
代码 | https://github.com/amzn/convolutional-handwriting-gan
场景文本合成
使用渲染引擎合成场景文本,增加训练样本,提升识别算法精度
[10].UnrealText: Synthesizing Realistic Scene Text Images From the Unreal
作者 | WorldShangbang Long, Cong Yao
单位 | 卡内基梅隆大学;旷视
代码 | https://jyouhou.github.io/UnrealText/
解读 | https://zhuanlan.zhihu.com/p/137406773
数据增广+文本识别
图像增广用于手写与场景文本识别
[11].Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition
作者 | Canjie Luo, Yuanzhi Zhu, Lianwen Jin, Yongpan Wang
单位 | 华南理工大学;阿里
代码 | https://github.com/Canjie-Luo/Text-Image-Augmentation
场景文本编辑
[12].STEFANN: Scene Text Editor Using Font Adaptive Neural Network
作者 | Prasun Roy, Saumik Bhattacharya, Subhankar Ghosh, Umapada Pal
单位 | 印度统计研究所;印度理工学院
代码 | https://github.com/prasunroy/stefann
网站 | https://prasunroy.github.io/stefann/
碎纸文档重建
破碎纸片重建文档,用于法医等刑侦调查
[13].Fast(er) Reconstruction of Shredded Text Documents via Self-Supervised Deep Asymmetric Metric Learning
作者 | Thiago M. Paixao, Rodrigo F. Berriel, Maria C. S. Boeres, Alessandro L. Koerich, Claudine Badue, Alberto F. De Souza, Thiago Oliveira-Santos
单位 | IFES,Brazil;UFES,Brazil;ETS,Canada
文本风格迁移
[14].SwapText: Image Based Texts Transfer in Scenes
作者 | Qiangpeng Yang, Jun Huang, Wei Lin
单位 | 阿里
场景文本识别+对抗攻击
[15].What Machines See Is Not What They Get: Fooling Scene Text Recognition Models With Adversarial Text Images
作者 | Xing Xu, Jiefu Chen, Jinhui Xiao, Lianli Gao, Fumin Shen, Heng Tao Shen
单位 | 电子科技大学
笔迹鉴定
[16].Sequential Motif Profiles and Topological Plots for Offline Signature Verification
作者 | Elias N. Zois, Evangelos Zervas, Dimitrios Tsourounis, George Economou
单位 | University of West Attica ;派图拉斯大学
阅读过本文的人还看了以下文章:
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《基于深度学习的自然语言处理》中/英PDF
Deep Learning 中文版初版-周志华团队
【全套视频课】最全的目标检测算法系列讲解,通俗易懂!
《美团机器学习实践》_美团算法团队.pdf
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
特征提取与图像处理(第二版).pdf
python就业班学习视频,从入门到实战项目
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
《深度学习之pytorch》pdf+附书源码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
《Python数据分析与挖掘实战》PDF+完整源码
汽车行业完整知识图谱项目实战视频(全23课)
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!
《神经网络与深度学习》最新2018版中英PDF+源码
将机器学习模型部署为REST API
FashionAI服装属性标签图像识别Top1-5方案分享
重要开源!CNN-RNN-CTC 实现手写汉字识别
yolo3 检测出图像中的不规则汉字
同样是机器学习算法工程师,你的面试为什么过不了?
前海征信大数据算法:风险概率预测
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
VGG16迁移学习,实现医学图像识别分类工程项目
特征工程(一)
特征工程(二) :文本数据的展开、过滤和分块
特征工程(三):特征缩放,从词袋到 TF-IDF
特征工程(四): 类别特征
特征工程(五): PCA 降维
特征工程(六): 非线性特征提取和模型堆叠
特征工程(七):图像特征提取和深度学习
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
蚂蚁金服2018秋招-算法工程师(共四面)通过
全球AI挑战-场景分类的比赛源码(多模型融合)
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
python+flask搭建CNN在线识别手写中文网站
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx
机大数据技术与机器学习工程
搜索公众号添加: datanlp
长按图片,识别二维码