pytorch 咖啡豆识别

news/2025/2/21 10:59:35/
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍦 参考文章地址: 365天深度学习训练营-第P6周:好莱坞明星识别
  • 🍖 作者:K同学啊

一、前期准备

1.设置GPU

import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets,models
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2.导入数据

data_dir = './49-data/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[1] for path in data_paths]
classNames
['Dark', 'Green', 'Light', 'Medium']
train_transforms = transforms.Compose([transforms.Resize([224,224]),# resize输入图片transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensortransforms.Normalize(mean = [0.485, 0.456, 0.406],std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])test_transforms = transforms.Compose([transforms.Resize([224,224]),# resize输入图片transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensortransforms.Normalize(mean = [0.485, 0.456, 0.406],std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1200Root location: 49-dataStandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
total_data.class_to_idx
{'Dark': 0, 'Green': 1, 'Light': 2, 'Medium': 3}

 

3.数据集划分

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
train_size,test_size
(960, 240)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
imgs, labels = next(iter(train_dl))
imgs.shape
torch.Size([32, 3, 224, 224])
import numpy as np# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):npimg = imgs.numpy().transpose((1,2,0))npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))npimg = npimg.clip(0, 1)# 将整个figure分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(npimg)plt.axis('off')

 

for X,y in test_dl:print('Shape of X [N, C, H, W]:', X.shape)print('Shape of y:', y.shape)break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32])

二、构建简单的CNN网络

1. 搭建模型

import torch.nn.functional as F# class vgg16(nn.Module):#     def __init__(self):
#         super(vgg16,self).__init__()#         self.block1 = nn.Sequential(
#             nn.Conv2d(3,64,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(64,64,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
#         )#         self.block2 = nn.Sequential(
#             nn.Conv2d(64,128,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(128,128,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
#         )#         self.block3 = nn.Sequential(
#             nn.Conv2d(128,256,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(256,256,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(256,256,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
#         )#         self.block4 = nn.Sequential(
#             nn.Conv2d(256,512,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(512,512,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(512,512,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
#         )#         self.block5 = nn.Sequential(
#             nn.Conv2d(512,512,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(512,512,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.Conv2d(512,512,kernel_size=(3,3),stride=(1,1),padding=(1,1)),
#             nn.ReLU(),
#             nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
#         )#         self.classifier = nn.Sequential(
#             nn.Linear(in_features=512*7*7, out_features=4096),
#             nn.ReLU(),
#             nn.Linear(in_features=4096,out_features=4096),
#             nn.ReLU(),
#             nn.Linear(in_features=4096,out_features=4)
#         )#         def forward(self,x):#             x = self.block1(x)
#             x = self.block2(x)
#             x = self.block3(x)
#             x = self.block4(x)
#             x = self.block5(x)
#             x = torch.flatten(x, start_dim=1)
#             x = self.classifier(x)#             return x# model = vgg16().to(device)
# model 
from torchvision.models import vgg16model = vgg16(pretrained = True).to(device)
for param in model.parameters(): # 只训练输出层param.requires_grad = Falsemodel.classifier._modules['6'] = nn.Linear(4096,len(classNames))
model.to(device)
model
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=4, bias=True))
)

2.查看模型详情

import torchsummary as summary
summary.summary(model,(3,224,224))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 64, 224, 224]           1,792ReLU-2         [-1, 64, 224, 224]               0Conv2d-3         [-1, 64, 224, 224]          36,928ReLU-4         [-1, 64, 224, 224]               0MaxPool2d-5         [-1, 64, 112, 112]               0Conv2d-6        [-1, 128, 112, 112]          73,856ReLU-7        [-1, 128, 112, 112]               0Conv2d-8        [-1, 128, 112, 112]         147,584ReLU-9        [-1, 128, 112, 112]               0MaxPool2d-10          [-1, 128, 56, 56]               0Conv2d-11          [-1, 256, 56, 56]         295,168ReLU-12          [-1, 256, 56, 56]               0Conv2d-13          [-1, 256, 56, 56]         590,080ReLU-14          [-1, 256, 56, 56]               0Conv2d-15          [-1, 256, 56, 56]         590,080ReLU-16          [-1, 256, 56, 56]               0MaxPool2d-17          [-1, 256, 28, 28]               0Conv2d-18          [-1, 512, 28, 28]       1,180,160ReLU-19          [-1, 512, 28, 28]               0Conv2d-20          [-1, 512, 28, 28]       2,359,808ReLU-21          [-1, 512, 28, 28]               0Conv2d-22          [-1, 512, 28, 28]       2,359,808ReLU-23          [-1, 512, 28, 28]               0MaxPool2d-24          [-1, 512, 14, 14]               0Conv2d-25          [-1, 512, 14, 14]       2,359,808ReLU-26          [-1, 512, 14, 14]               0Conv2d-27          [-1, 512, 14, 14]       2,359,808ReLU-28          [-1, 512, 14, 14]               0Conv2d-29          [-1, 512, 14, 14]       2,359,808ReLU-30          [-1, 512, 14, 14]               0MaxPool2d-31            [-1, 512, 7, 7]               0
AdaptiveAvgPool2d-32            [-1, 512, 7, 7]               0Linear-33                 [-1, 4096]     102,764,544ReLU-34                 [-1, 4096]               0Dropout-35                 [-1, 4096]               0Linear-36                 [-1, 4096]      16,781,312ReLU-37                 [-1, 4096]               0Dropout-38                 [-1, 4096]               0Linear-39                    [-1, 4]          16,388
================================================================
Total params: 134,276,932
Trainable params: 16,388
Non-trainable params: 134,260,544
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.77
Params size (MB): 512.23
Estimated Total Size (MB): 731.57
----------------------------------------------------------------

三、训练模型

# 设置优化器
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)#要训练什么参数/
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)#学习率每5个epoch衰减成原来的1/10
loss_fn = nn.CrossEntropyLoss()

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共900张图片num_batches = len(dataloader)   # 批次数目,29(900/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

2.编写测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3、正式训练

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)scheduler.step()#学习率衰减model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最优模型if epoch_test_acc > best_acc:best_acc = epoch_train_accstate = {'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)
Epoch:18, Train_acc:93.5%, Train_loss:0.270, Test_acc:95.4%,Test_loss:0.223
Epoch:19, Train_acc:94.5%, Train_loss:0.241, Test_acc:95.8%,Test_loss:0.223
Epoch:20, Train_acc:94.4%, Train_loss:0.243, Test_acc:96.2%,Test_loss:0.207
Done
best_acc: 0.94375

四、结果可视化

1.Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

2.指定图片进行预测

from PIL import Imageclasses = list(total_data.class_to_idx)def predict_one_img(image_path,model,transform,classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
predict_one_img('./49-data/Dark/dark (1).png', model, train_transforms, classNames)
预测结果是:Dark


http://www.ppmy.cn/news/8051.html

相关文章

【Eureka】如何实现注册,续约,剔除,服务发现

文章目录前言服务注册服务续约服务剔除(服务端去剔除过期服务)被动下线服务下线(主动下线)client发起的服务发现集群同步信息Work下载前言 Eureka是SpringCloud的具体实现之一,提供了服务注册,发现,续约,撤…

魔术小游戏

魔术游戏一、问题描述二、基本流程三、具体步骤1.在集合中随机生成起始牌2.菜单栏3.找到包含[选中牌]的一组牌在大集合中的索引4.洗牌5.发牌四、完整代码五、效果展示一、问题描述 这是一个魔术游戏,将15张牌分为三组,每组5张,让玩家从中任选…

保姆教程系列二、Redis高可用(主从同步+哨兵模式)

系列文章目录 !!!是的没错,胖友们,保姆教程系列又更新了!!! 保姆教程系列一、Redis部署 so easy 保姆教程系列二、Redis高可用(主从同步哨兵模式) 保姆教程系…

SpringBoot缓存应用实践

一、通用缓存接口 1、缓存基础算法 FIFO(First In First Out),先进先出,和OS里的FIFO思路相同,如果一个数据最先进入缓存中,当缓存满的时候,应当把最先进入缓存的数据给移除掉。 LFU&#xff…

极限学习机ELM回归预测(MATLAB代码实现)

🍒🍒🍒欢迎关注🌈🌈🌈 📝个人主页:我爱Matlab 👍点赞➕评论➕收藏 养成习惯(一键三连)🌻🌻🌻 🍌希…

crypto-EasyMath(Bugku CTF)

新RSA题,记录一下。 #task.py from Crypto.Util.number import getPrime, bytes_to_long from secret import flagp getPrime(2048) q getPrime(2048) x getPrime(4096) y getPrime(4096)n p * q e 0x10001 c pow(bytes_to_long(flag), e, n)print(c) print…

RPC 好,还是 RESTful 好

OSI网络七层模型 RPC服务 RPC架构 同步调用与异步调用 流行的RPC框架 HTTP服务 总之 RPC主要是基于TCP/IP协议的,而HTTP服务主要是基于HTTP协议的,我们都知道HTTP协议是在传输层协议TCP之上的,所以效率来看的话,RPC当然是要更…

Java开发 - 树(二叉树,二叉排序树,红黑树)

目录 前言 你好,认识一下,我是树 二叉树与二叉排序树 二叉排序树特点 为什么说二叉排序树查询效率要高于链表呢? 元素的类型 比较器 手写二叉排序树 定义一棵二叉树 增加元素 查询元素 修改元素 删除元素 遍历二叉树 重写toS…