365天深度学习训练营-第P2周:彩色图片识别

news/2024/12/24 1:40:25/

目录

一、前言

二、我的环境

三、代码实现

1、数据下载以及可视化

2、CNN模型

3、训练结果可视化

 4、随机图像预测

 四、模型优化

1、CNN模型

2、VGG-16模型

3、Alexnet模型

4、Resnet模型


一、前言

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ) 中的学习记录博客**
>- **🍦 参考文章:365天深度学习训练营-第P2周:彩色图片识别(训练营内部成员可读)**
>- **🍖 原作者:[K同学啊|接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
● 难度:夯实基础⭐⭐
● 语言:Python3、Pytorch3
● 时间:11月26日-12月2日
🍺 要求:
1. 自己搭建CNN网络框架
2. 调用官方的VGG-16网络框架🍻 拔高(可选):
1. 验证集准确率达到85%
2. 使用PPT画出VGG-16算法框架图

二、我的环境

语言环境:Python3.7

编译器:jupyter notebook

深度学习环境:TensorFlow2

三、代码实现

# 设置GPU
import copyimport torch
import torch.nn as nn
import matplotlib.pyplot as plt
from torchvision import datasets, transforms, models
import torchvision
import randomdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")device# 导入数据
train_ds = torchvision.datasets.CIFAR10('data',train=True,transform=torchvision.transforms.ToTensor(),  # 将数据类型转化为Tensordownload=True)test_ds = torchvision.datasets.CIFAR10('data',train=False,transform=torchvision.transforms.ToTensor(),  # 将数据类型转化为Tensordownload=True)
batch_size = 32train_dl = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,shuffle=True)test_dl = torch.utils.data.DataLoader(test_ds,batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape
import numpy as np# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):# 维度缩减npimg = imgs.numpy().transpose((1, 2, 0))# 将整个figure分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i + 1)plt.imshow(npimg, cmap=plt.cm.binary)plt.axis('off')
# 构建CNN网络
import torch.nn.functional as Fnum_classes = 10  # 图片的类别数class Model(nn.Module):def __init__(self):super().__init__()# 特征提取网络self.conv1 = nn.Conv2d(3, 64, kernel_size=3)  # 第一层卷积,卷积核大小为3*3self.pool1 = nn.MaxPool2d(kernel_size=2)  # 设置池化层,池化核大小为2*2self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3self.pool2 = nn.MaxPool2d(kernel_size=2)self.conv3 = nn.Conv2d(64, 128, kernel_size=3)  # 第二层卷积,卷积核大小为3*3self.pool3 = nn.MaxPool2d(kernel_size=2)# 分类网络self.fc1 = nn.Linear(512, 256)self.fc2 = nn.Linear(256, num_classes)# 前向传播def forward(self, x):x = self.pool1(F.relu(self.conv1(x)))x = self.pool2(F.relu(self.conv2(x)))x = self.pool3(F.relu(self.conv3(x)))x = torch.flatten(x, start_dim=1)x = F.relu(self.fc1(x))x = self.fc2(x)return xfrom torchinfo import summary# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)summary(model)
# 设置超参数
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
learn_rate = 1e-2  # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)# 编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)  # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)  # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()  # 反向传播optimizer.step()  # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss# 编写测试函数
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_lossepochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最优模型if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))PATH = './best_model.pth '
torch.save(model.state_dict(), PATH)
print('Done')# 训练结果
import matplotlib.pyplot as plt
# 隐藏警告
import warningswarnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()plt.figure(figsize=(16, 14))
for i in range(10):img_data, label_id = random.choice(list(zip(test_ds.data, test_ds.targets)))img = transforms.ToPILImage()(img_data)predict_id = torch.argmax(model(transform(img).to(device).unsqueeze(0)))predict = test_ds.classes[predict_id]label = test_ds.classes[label_id]plt.subplot(3, 4, i + 1)plt.imshow(img)plt.title(f'truth:{label}\npredict:{predict}')

1、数据下载以及可视化

 

2、CNN模型

 

3、训练结果可视化

得到的训练集和测试集的的acc和loss数据可视化,得知预测的结果并不是很满意,所以本文后面会对模型进行改善。

 4、随机图像预测

 四、模型优化

1、CNN模型

主要的思路就是增加卷积层和池化层 可以在其中加BN层

BN的本质原理:在网络的每一层输入的时候,又插入了一个归一化层,也就是先做一个归一化处理(归一化至:均值0、方差为1),然后再进入网络的下一层。不过文献归一化层,可不像我们想象的那么简单,它是一个可学习、有参数(γ、β)的网络层。

class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 12, kernel_size=5, padding=0),  # 12*220*220nn.BatchNorm2d(12),nn.ReLU())self.conv2 = nn.Sequential(nn.Conv2d(12, 12, kernel_size=5, padding=0),  # 12*216*216nn.BatchNorm2d(12),nn.ReLU())self.pool3 = nn.Sequential(nn.MaxPool2d(2),  # 12*108*108nn.Dropout(0.15))self.conv4 = nn.Sequential(nn.Conv2d(12, 24, kernel_size=5, padding=0),  # 24*104*104nn.BatchNorm2d(24),nn.ReLU())self.conv5 = nn.Sequential(nn.Conv2d(24, 24, kernel_size=5, padding=0),  # 24*100*100nn.BatchNorm2d(24),nn.ReLU())self.pool6 = nn.Sequential(nn.MaxPool2d(2),  # 24*50*50nn.Dropout(0.15))self.fc = nn.Sequential(nn.Linear(24 * 50 * 50, num_classes))def forward(self, x):batch_size = x.size(0)x = self.conv1(x)  # 卷积-BN-激活x = self.conv2(x)  # 卷积-BN-激活x = self.pool3(x)  # 池化-Dropx = self.conv4(x)  # 卷积-BN-激活x = self.conv5(x)  # 卷积-BN-激活x = self.pool6(x)  # 池化-Dropx = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是21168x = self.fc(x)return x

 模型结构图可以在进行绘制

NN SVG (alexlenail.me)

2、VGG-16模型

class Vgg16_net(nn.Module):def __init__(self):super(Vgg16_net, self).__init__()self.layer1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),  # (32-3+2)/1+1=32   32*32*64nn.BatchNorm2d(64),# inplace-选择是否进行覆盖运算# 意思是是否将计算得到的值覆盖之前的值,比如nn.ReLU(inplace=True),# 意思就是对从上层网络Conv2d中传递下来的tensor直接进行修改,# 这样能够节省运算内存,不用多存储其他变量nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),# (32-3+2)/1+1=32    32*32*64# Batch Normalization强行将数据拉回到均值为0,方差为1的正太分布上,# 一方面使得数据分布一致,另一方面避免梯度消失。nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2)  # (32-2)/2+1=16         16*16*64)self.layer2 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),# (16-3+2)/1+1=16  16*16*128nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),# (16-3+2)/1+1=16   16*16*128nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # (16-2)/2+1=8     8*8*128)self.layer3 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),  # (8-3+2)/1+1=8   8*8*256nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),  # (8-3+2)/1+1=8   8*8*256nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),  # (8-3+2)/1+1=8   8*8*256nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # (8-2)/2+1=4      4*4*256)self.layer4 = nn.Sequential(nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),# (4-3+2)/1+1=4    4*4*512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),# (4-3+2)/1+1=4    4*4*512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),# (4-3+2)/1+1=4    4*4*512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # (4-2)/2+1=2     2*2*512)self.layer5 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),# (2-3+2)/1+1=2    2*2*512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),# (2-3+2)/1+1=2     2*2*512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),# (2-3+2)/1+1=2      2*2*512nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.MaxPool2d(2, 2)  # (2-2)/2+1=1      1*1*512)self.conv = nn.Sequential(self.layer1,self.layer2,self.layer3,self.layer4,self.layer5)self.fc = nn.Sequential(# y=xA^T+b  x是输入,A是权值,b是偏执,y是输出# nn.Liner(in_features,out_features,bias)# in_features:输入x的列数  输入数据:[batchsize,in_features]# out_freatures:线性变换后输出的y的列数,输出数据的大小是:[batchsize,out_features]# bias: bool  默认为True# 线性变换不改变输入矩阵x的行数,仅改变列数nn.Linear(512, 512),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(512, 256),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(256, 10))def forward(self, x):x = self.conv(x)# 这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成512列# 那不确定的地方就可以写成-1# 如果出现x.size(0)表示的是batchsize的值# x=x.view(x.size(0),-1)x = x.view(-1, 512)x = self.fc(x)return x

模型结构图大致如下

3、Alexnet模型

可以使用 torchvision.models定义神经网络

# 使用torchvision.models定义神经网络
net_a = models.alexnet(num_classes = 10)
print(net_a)# 定义loss函数:
loss_fn = nn.CrossEntropyLoss()
print(loss_fn)# 定义优化器
net = net_aLearning_rate = 0.01  # 学习率# optimizer = SGD: 基本梯度下降法
# parameters:指明要优化的参数列表
# lr:指明学习率
# optimizer = torch.optim.Adam(model.parameters(), lr = Learning_rate)
optimizer = torch.optim.SGD(net.parameters(), lr=Learning_rate, momentum=0.9)
print(optimizer)

 

 

 模型结构图

4、Resnet模型

class ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels, stride = 1, shotcut = None):super(ResidualBlock, self).__init__()self.conv1 = conv3x3(in_channels, out_channels,stride)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = conv3x3(out_channels, out_channels)self.bn2 = nn.BatchNorm2d(out_channels)self.shotcut = shotcutdef forward(self, x):residual = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.shotcut:residual = self.shotcut(x)out += residualout = self.relu(out)return out
class ResNet(nn.Module):def __init__(self, block, layer, num_classes = 10):super(ResNet, self).__init__()self.in_channels = 16self.conv = conv3x3(3,16)self.bn = nn.BatchNorm2d(16)self.relu = nn.ReLU(inplace=True)self.layer1 = self.make_layer(block, 16, layer[0])self.layer2 = self.make_layer(block, 32, layer[1], 2)self.layer3 = self.make_layer(block, 64, layer[2], 2)self.avg_pool = nn.AvgPool2d(8)self.fc = nn.Linear(64, num_classes)def make_layer(self, block, out_channels, blocks, stride = 1):shotcut = Noneif(stride != 1) or (self.in_channels != out_channels):shotcut = nn.Sequential(nn.Conv2d(self.in_channels, out_channels,kernel_size=3,stride = stride,padding=1),nn.BatchNorm2d(out_channels))layers = []layers.append(block(self.in_channels, out_channels, stride, shotcut))for i in range(1, blocks):layers.append(block(out_channels, out_channels))self.in_channels = out_channelsreturn nn.Sequential(*layers)def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.avg_pool(x)x = x.view(x.size(0), -1)x = self.fc(x)return x

模型图转自知乎

 


http://www.ppmy.cn/news/720.html

相关文章

12.01 M4-UART-IT实验

1.使用CORTEX-M4核,实验中断实验和串口实验结合--->上传到CSDN 按键触发时,LED灯状态取反,并且在串口工具打印一句话 KEY1按键按下,LED1状态取反,串口工具打印key1 down!!!! 主要代码gpio.c void HAL_GPI…

SpringBoot实用开发之热部署

目录 热部署 手动启动热部署 自动启动热部署 热部署范围布置 关闭热部署 热部署 能学到spring boot实用开发篇的相信都已经对IDEA和maven了如指掌了,我就基于这些前置知识来说一下热部署,其实也很简单。 手动启动热部署 首先可以在你的pom.xml文…

第二证券|汽车板块现涨停潮!多只地产债再涨到临停

在昨日大幅上涨后,今日上午A股商场持续上行,不过涨势放缓,到上午收盘,上证指数上涨0.21%。 昨日带动大市上行的地产板块今日上午涨势减缓,包含福星股份、世茂股份在内的多只地产股涨停。不过也有极少数地产股逆势跌落&…

Rust机器学习之Plotters

Rust机器学习之Plotters 本文将带领大家学习Plotters的基础用法。重点学习Plotters的图表元素和常用图表的使用。 本文是“Rust替代Python进行机器学习”系列文章的第四篇,其他教程请参考下面表格目录: Python库Rust替代方案教程numpyndarrayRust机器…

信创平台:查询CPU,内存等命令

信创平台:龙芯,海光、鲲鹏服务器查询CPU,内存等命令 #1、查看操作系统(统信操作系统) 海光查询操作系统: cat /etc/os-release查看操作系统 cat /etc/os-version查看操作系统版本 龙芯,鲲鹏查询操作系统:cat /etc…

蓝桥杯嵌入式AD采样解析

文章目录前言一、什么是AD采样二、原理图查看及cubeMX配置三、代码解析总结前言 本文将带大家学习AD采样。 一、什么是AD采样 原理部分这里就不多介绍了,给大家推荐一篇文章大家自己去了解一下即可。 AD采样 二、原理图查看及cubeMX配置 在板子上面有两个可调电…

leetcode-每日一题-1779-找到最近的有相同 X 或 Y 坐标的点(简单,数学思想)

今天这道每日一题很简单,没啥可说的,细心点即可 1779. 找到最近的有相同 X 或 Y 坐标的点 难度简单73收藏分享切换为英文接收动态反馈 给你两个整数 x 和 y ,表示你在一个笛卡尔坐标系下的 (x, y) 处。同时,在同一个坐标系下给你一…

Template类创建模板替换字符串

Template类创建模板替换字符串 1.概述 如果你在操作字符串,如果你操作的字符串内容很多,希望字符串中的内容能够根据规则动态替换,并且在长篇幅的字符串中需要替换任意位置任意次数的字符,使用str提供的replace方法代码会写的非…