Hugging Face Transformers Agent

news/2024/11/29 10:00:08/

🤗Hugging Face Transformers Agent

就在两天前,🤗Hugging Face 发布了 Transformers Agent——一种利用自然语言从精选工具集合中选择工具并完成各种任务的代理。听着是不是似曾相识? 没错,Hugging Face Transformers Agent 跟🦜🔗LangChain 工具和代理很像。 本文,我将介绍什么是 Transformers Agent 以及它与 🦜🔗LangChain Agent 的比较。

在这里插入图片描述

文章目录

    • 什么是 Transformers Agent?
    • Transformers Agent 工作原理
      • 第一步:实例化代理
      • 第二步:运行Agent
    • 与 🦜🔗LangChain Agent 的区别
      • 工具(Tools)
        • 🤗Hugging Face
        • 🦜🔗LangChain
      • 代理(Agent)
        • 🤗Hugging Face
        • 🦜🔗LangChain
      • 自定义代理
      • 代码执行
        • 🤗Hugging Face
        • 🦜🔗LangChain
    • 结论

什么是 Transformers Agent?

简而言之,Transformers Agent 在 Transformer 之上提供了一个自然语言 API:我们可以定义一组精选工具并设计了一个代理来解释自然语言并使用这些工具。

世界各地的开发者在 Hugging Face 上托管了很多超赞的模型。 这么多模型要如何挑选使用呢?于是有人突发灵感——我们可以将这些模型与 LLM 融合吗? 我们可以使用 LLM 来决定使用哪个模型、编写代码、运行代码并生成结果吗? 从本质上讲,没有人需要再学习所有复杂的特定任务模型。只要给它一个任务,LLMs(Agent)就会为我们包办一切。

实现步骤如下:

img

图片来源:https://huggingface.co/docs/transformers/transformers_agents
  • 指令(Instruction):用户给出的提示;
  • 提示(Promt):添加了具体说明的提示模板,其中列出了多个要使用的工具;
  • 工具(Tools):精选的 Transformer 模型列表,例如用于问答的 Flan-T5;
  • 代理(Agen):解释问题、决定使用哪些工具并生成代码以使用工具执行任务的 LLM;
  • 受限 Python 解释器(Restricted Python Interpreter):执行 Python 代码。

Transformers Agent 工作原理

第一步:实例化代理

第一步是实例化一个代理。 代理只是一个 LLM,它可以是 OpenAI 模型、StarCoder 模型或 OpenAssistant 模型。

其中 OpenAI 模型不是免费的,需要提供 OpenAI API 密钥。

StarCoder 模型和 OpenAssistant 模型是免费的。从 HuggingFace Hub 加载 StarCoder 模型和 OpenAssistant 模型,需要 HuggingFace Hub API 密钥。

from transformers import HfAgent# OpenAI
agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")from transformers import OpenAiAgent
from huggingface_hub import login
login("<YOUR_TOKEN>")# Starcoder
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")# OpenAssistant
agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")

第二步:运行Agent

通过执行 agent.run("prompt") 方法并带上提示,即可自动理解任务,并为任务选择工具,例如选择图像生成工具来创建图像。

img

agent.chat("prompt") 方法保留聊天记录。 例如,这里它知道我们之前生成了一张图片,它可以转换图像。

img

与 🦜🔗LangChain Agent 的区别

Transformers Agent 仍处于试验阶段。 它的使用范围比 LangChain Agent 小得多,灵活性也较差。 Transformers Agent 目前主要聚焦于使用 Transformer 模型和执行 Python 代码,而 LangChain Agent 则“几乎” 可以做任何事情。 我们具体比较一下 Transformers Agent 和 LangChain Agents 之间各组件的不同:

工具(Tools)

🤗Hugging Face

🤗Hugging Face Transfomers Agent 有一个超赞的工具列表,每个工具都由 Transformer 模型提供支持。这些工具提供了三个显著优势:

  1. 尽管 Transformers Agent 目前只能与少数工具进行交互,但它有与超过 100,000 个 Hugging Face 模型进行通信的潜能。它拥有完整的多模态功能,包括文本、图像、视频、音频和文档。
  2. 由于这些模型是为特定任务专门构建的,与仅依赖 LLM 相比,使用它们可以更直接,并可以生成更准确的结果。 例如,我们可以简单地部署专为文本分类设计的 BART,而不是为 LLM 设计文本分类的提示;
  3. 这些工具解锁了 LLM 无法单独完成的功能。以 BLIP 为例,它使我们能够生成引人入胜的图像说明——这是一项超出 LLM 范围的任务。

🦜🔗LangChain

🦜🔗LangChain 的工具都是外部API,比如Google Search,Python REPL等。事实上,LangChain 通过 load_huggingface_tool 函数支持 HuggingFace Tools。LangChain 可以做很多 Transformers Agent 已经可以做的事情。 另一方面,Transformers Agents 也有可能整合所有 LangChain 工具。

这两种情况下,每个工具都只是一个 Python 文件。这是 🤗Hugging Face Transformers Agent 工具的源代码,这是 🦜🔗LangChain 工具的源代码。 如你所见,每个 Python 文件代表一个工具,一个工具一个类。

代理(Agent)

🤗Hugging Face

🤗Hugging Face Transformers Agent 使用提示模板,根据工具的描述来决定使用哪个工具。它要求 LLM 提供解释,并在提示中提供一些小样本学习示例。

🦜🔗LangChain

🦜🔗LangChain 默认使用 ReAct 框架,根据工具的描述来决定使用哪个工具。关于 ReAct 框架的更多信息,请阅读此论文。LangChain Agent不仅能对决定采取行动,还能提供想法和推理,这类似于 Transformers Agent 使用的解释。此外,🦜🔗LangChain 有四种代理类型:

  • zero-shot-react-description

    该代理使用 ReAct 框架,仅根据工具的描述来确定要使用的工具。可以提供任意数量的工具。此代理要求为每个工具提供描述。

  • react-docstore
    该代理使用 ReAct 框架与文档库进行交互。必须提供两个工具:一个搜索工具和一个查找工具(它们的名称必须完全一样)。搜索工具负责搜索文档,而查找工具负责在最近找到的文档中查找术语。该代理与原始 ReAct 论文 一致,特别是维基百科的例子。

  • self-ask-with-search

    该代理使用一个名为 Intermediate Answer 的工具。该工具能够查找问题的事实答案。该代理来自 self ask with search 原始论文,其中提供了一个 Google 搜索 API 作为工具。

  • conversational-react-description

    该代理被设计用于会话设置。提示旨在让代理更健谈、更有用。它使用 ReAct 框架来决定使用哪个工具,并使用内存来记住之前的对话交互。

自定义代理

在 🤗Hugging Face Transformers Agent 和 🦜🔗LangChain Agent 上创建自定义代理都很容易:

  • 🤗Hugging Face Transformers Agent:请参阅此 colab 末尾的 HuggingFace Transformer Agent 示例。
  • 🦜🔗LangChain Agent:请参阅此处的 LangChain 示例。

代码执行

🤗Hugging Face

🤗Hugging Face Transformers Agent 包括“代码执行”作为 LLM 选择工具并生成代码后的步骤之一。这限制了 Transformers Agent 执行 Python 代码的目标。

🦜🔗LangChain

🦜🔗LangChain 将“代码执行”作为其工具之一,这意味着执行代码并不是整个过程的最后一步。这为任务目标是什么提供了更多的灵活性:它可以是执行 Python 代码,也可以是其他的东西,比如进行谷歌搜索并返回搜索结果。

结论

本文我们探索了🤗Hugging Face Transformers Agents 的功能,并将其与🦜🔗LangChain Agents 进行了比较。尽管现在 🤗Hugging Face Transformers Agents 的功能还不如 🦜🔗LangChain 灵活强大,但 🤗Hugging Face Transformers Agents 背靠Hugging Face后面庞大的模型库,尤其自身的突出优势。期待 🤗Hugging Face Transformers Agents 的进一步发展和进步。

如果你想快速体验 🤗Hugging Face Transformers Agent,可以通过 Hugging Face 提供的 Colab 进行体验。


http://www.ppmy.cn/news/69822.html

相关文章

数据分析06——Pandas中的数据抽取

1、前言&#xff1a; 在Pandas中进行数据抽取主要有两种方法&#xff0c;一种是loc方法&#xff0c;一种是iloc方法&#xff1b;在获取数据时可以获取的数据有三种形式&#xff0c;一种是Series类型&#xff0c;一种是DataFrame类型&#xff0c;还有一种是直接获取数据值&…

一五一、web+小程序骨架屏整理

骨架屏介绍 请点击查看智能小程序骨架屏 车载小程序骨架屏 车载小程序为方便开发者设置骨架屏&#xff0c;在智能小程序的基础上抽取出骨架屏模板&#xff0c;开发者只需要在 skeleton 文件夹下配置config.json&#xff08;page 和骨架屏的映射关系文件&#xff09;即可生效骨…

stm32f407单片机上通过HAL库实现can总线数据的收发

最近在使用can总线&#xff0c;由于这个以前接触的比较少&#xff0c;所以调试代码的时候直接是下载的正点原子的例程&#xff0c;在这个基础上修改调试的。现在将调试中遇到的问题&#xff0c;总结一下&#xff0c;避免以后踩坑。目前写了一个查询方式的&#xff0c;一个中断方…

C++primer plus

第四章 1.如何声明下述数据&#xff1f; a. actor是由30个char组成的数组 b.betsie是由100个short组成的数组 c.chuck是由13个float组成的数组 d.dipsea是由64个long double组成的数组 2.使用模板类array而不是数组来完成问题1。 3.声明一个包含5个元素的int数组&#x…

学习RHCSA的day.03

目录 2.6 Linux系统的目录结构 2.7 目录操作命令 2.8 文件操作命令 2.6 Linux系统的目录结构 1、Linux目录结构的特点 分区加载于目录结构&#xff1a; 使用树形目录结构来组织和管理文件。整个系统只有一个位于根分区的一个根目录&#xff08;树根&#xff09;、一棵树。…

SolidWorks二次开发(C#)-环境搭建

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1、前言2、按照Solidworks2022和VS20223、在VS2022中创建一个Winform工程4、添加SolidWorks动态链接库5、在按钮中添加代码6、测试 1、前言 做了有些SolidWorks二次…

浅谈Koa2框架

框架和库 什么是框架 前端框架一般指用于简化网页设计的框架&#xff0c;使用广泛的前端开发套件。 比如&#xff0c;jquery&#xff0c;extjs&#xff0c;bootstrap等等&#xff0c;这些框架封装了一些功能&#xff0c;比如html文档操作&#xff0c;漂亮的各种控件&#xf…

C语言操作符详解(上)

C语言操作符详解&#xff08;上&#xff09; 前言1. 算术操作符2. 移位操作符2.1 左移操作符(<<)2.2 右移操作符&#xff08;>>&#xff09; 3. 位操作符3.1 按位与&#xff08;&&#xff09;3.2 按位或&#xff08;|&#xff09;3.4 按位异或&#xff08;^&am…