redis rehash

news/2024/11/24 8:29:50/

在这里插入图片描述

dict结构

dictEntry即键值对,每个桶就是dictEntry连接的链表

typedef struct dictEntry {void *key;union {void *val; // 自定义类型uint64_t u64;int64_t s64;double d;} v;struct dictEntry *next;
} dictEntry;

数据真正指向的地方

typedef struct dictht {dictEntry **table;unsigned long size;// 计算hash key。sizemask = size-1unsigned long sizemask;unsigned long used;
} dictht;

dict结构

typedef struct dict {dictType *type;void *privdata;dictht ht[2]; // two hash table for incremental rehashinglong rehashidx; // rehashing not in progress if rehashidx == -1unsigned long iterators; // number of iterators currently running
} dict;

什么时候rehash

扩容条件

扩容发生于打开resizing的情况下超出了使用量/容量的阈值比率(通常是1),或者超出强制扩容比率(5)

// Source: https://github.com/redis/redis/blob/b8c67ce41b51247c02a639929e4fab20189afa1e/src/dict.c#L1030
static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
{unsigned long idx, table;/* Expand the hash table if needed */if (_dictExpandIfNeeded(d) == DICT_ERR)return -1;for (table = 0; table <= 1; table++) {// a bunch of operations going on, we are not interested}return idx;
}// Source: https://github.com/redis/redis/blob/b8c67ce41b51247c02a639929e4fab20189afa1e/src/dict.c#L54
/* Using dictEnableResize() / dictDisableResize() we make possible to* enable/disable resizing of the hash table as needed. This is very important* for Redis, as we use copy-on-write and don't want to move too much memory* around when there is a child performing saving operations.** Note that even when dict_can_resize is set to 0, not all resizes are* prevented: a hash table is still allowed to grow if the ratio between* the number of elements and the buckets > dict_force_resize_ratio. */
static int dict_can_resize = 1;
static unsigned int dict_force_resize_ratio = 5;// Source: https://github.com/redis/redis/blob/b8c67ce41b51247c02a639929e4fab20189afa1e/src/dict.c#L987
/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{/* Incremental rehashing already in progress. Return. */if (dictIsRehashing(d)) return DICT_OK;/* If the hash table is empty expand it to the initial size. */if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);/* If we reached the 1:1 ratio, and we are allowed to resize the hash* table (global setting) or we should avoid it but the ratio between* elements/buckets is over the "safe" threshold, we resize doubling* the number of buckets. */if (d->ht[0].used >= d->ht[0].size &&(dict_can_resize ||d->ht[0].used/d->ht[0].size > dict_force_resize_ratio) &&dictTypeExpandAllowed(d)){return dictExpand(d, d->ht[0].used + 1);}return DICT_OK;
}

有时,如果大量内存被分配超出了可分配内存限制可能会导致redis无法响应,并且可能会驱逐大量的key

// Source: https://github.com/redis/redis/blob/c4b52fc7c9e77fb1f2719d2cb5b9977b90698721/src/server.h#L164
#define HASHTABLE_MAX_LOAD_FACTOR 1.618   /* Maximum hash table load factor. */// Source: https://github.com/redis/redis/blob/c4b52fc7c9e77fb1f2719d2cb5b9977b90698721/src/dict.c#L977
/* Because we may need to allocate huge memory chunk at once when dict* expands, we will check this allocation is allowed or not if the dict* type has expandAllowed member function. */
static int dictTypeExpandAllowed(dict *d) {if (d->type->expandAllowed == NULL) return 1;return d->type->expandAllowed(_dictNextPower(d->ht[0].used + 1) * sizeof(dictEntry*),(double)d->ht[0].used / d->ht[0].size);
}// Source: https://github.com/redis/redis/blob/c4b52fc7c9e77fb1f2719d2cb5b9977b90698721/src/server.c#L1314
/* Return 1 if currently we allow dict to expand. Dict may allocate huge* memory to contain hash buckets when dict expands, that may lead redis* rejects user's requests or evicts some keys, we can stop dict to expand* provisionally if used memory will be over maxmemory after dict expands,* but to guarantee the performance of redis, we still allow dict to expand* if dict load factor exceeds HASHTABLE_MAX_LOAD_FACTOR. */
// 若使用比率小于等于HASHTABLE_MAX_LOAD_FACTOR,就回检查释放超出可分配最大内存
int dictExpandAllowed(size_t moreMem, double usedRatio) {if (usedRatio <= HASHTABLE_MAX_LOAD_FACTOR) {return !overMaxmemoryAfterAlloc(moreMem);} else {return 1;}
}

缩容条件

若hash table大于DICT_HT_INITIAL_SIZE = 4并且负载因子小于0.1,那么就会进行缩容

/* This is the initial size of every hash table */
#define DICT_HT_INITIAL_SIZE     4// Source: https://github.com/redis/redis/blob/b8c67ce41b51247c02a639929e4fab20189afa1e/src/server.h#L162
/* Hash table parameters */
#define HASHTABLE_MIN_FILL        10      /* Minimal hash table fill 10% */// Source: https://github.com/redis/redis/blob/b8c67ce41b51247c02a639929e4fab20189afa1e/src/dict.h#L147
#define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size)
#define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)// Source: https://github.com/redis/redis/blob/b8c67ce41b51247c02a639929e4fab20189afa1e/src/server.c#L1498
int htNeedsResize(dict *dict) {long long size, used;size = dictSlots(dict);used = dictSize(dict);return (size > DICT_HT_INITIAL_SIZE &&(used*100/size < HASHTABLE_MIN_FILL));
}// Source: https://github.com/redis/redis/blob/c4b52fc7c9e77fb1f2719d2cb5b9977b90698721/src/dict.c#L133
/* Resize the table to the minimal size that contains all the elements,* but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d)
{unsigned long minimal;if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;minimal = d->ht[0].used;if (minimal < DICT_HT_INITIAL_SIZE)minimal = DICT_HT_INITIAL_SIZE;return dictExpand(d, minimal);
}

“虚假”的rehash

在满足rehash条件之后会进行rehash,但这个rehash并不是真正的搬迁过程

/* Expand or create the hash table,* when malloc_failed is non-NULL, it'll avoid panic if malloc fails (in which case it'll be set to 1).* Returns DICT_OK if expand was performed, and DICT_ERR if skipped. */
int _dictExpand(dict *d, unsigned long size, int* malloc_failed)
{if (malloc_failed) *malloc_failed = 0;/* the size is invalid if it is smaller than the number of* elements already inside the hash table */// 若使用元素数量大于容量,或者已经rehash,报错if (dictIsRehashing(d) || d->ht[0].used > size)return DICT_ERR;dictht n; /* the new hash table */// 按照原容量两倍扩展新容量unsigned long realsize = _dictNextPower(size);/* Rehashing to the same table size is not useful. */// rehash的容量等于原容量是没有意义的,直接返回if (realsize == d->ht[0].size) return DICT_ERR;/* Allocate the new hash table and initialize all pointers to NULL */// 初始化新hash tablen.size = realsize;n.sizemask = realsize-1;if (malloc_failed) {n.table = ztrycalloc(realsize*sizeof(dictEntry*));*malloc_failed = n.table == NULL;if (*malloc_failed)return DICT_ERR;} elsen.table = zcalloc(realsize*sizeof(dictEntry*));// 初始化新hash table使用量为0n.used = 0;/* Is this the first initialization? If so it's not really a rehashing* we just set the first hash table so that it can accept keys. */// 若dict本来是空的,那么直接将初始化的新hash table赋予给dictif (d->ht[0].table == NULL) {d->ht[0] = n;return DICT_OK;}/* Prepare a second hash table for incremental rehashing */// 赋予新hash table给dict的第二个hash table(也就是rehash hash table),并标记开始rehashd->ht[1] = n;d->rehashidx = 0;return DICT_OK;
}/* return DICT_ERR if expand was not performed */
int dictExpand(dict *d, unsigned long size) {return _dictExpand(d, size, NULL);
}

真正rehash过程

在每次对dict进行添加、删除、查找或者更新操作时会执行真正的rehash

/* Performs N steps of incremental rehashing. Returns 1 if there are still* keys to move from the old to the new hash table, otherwise 0 is returned.** Note that a rehashing step consists in moving a bucket (that may have more* than one key as we use chaining) from the old to the new hash table, however* since part of the hash table may be composed of empty spaces, it is not* guaranteed that this function will rehash even a single bucket, since it* will visit at max N*10 empty buckets in total, otherwise the amount of* work it does would be unbound and the function may block for a long time. */
// n代表至多有n个桶被rehash
int dictRehash(dict *d, int n) {int empty_visits = n*10; /* Max number of empty buckets to visit. */// 若未处于rehash过程中,返回if (!dictIsRehashing(d)) return 0;// 遍历dict直到使用量为0或者达到本次最大遍历桶数量while(n-- && d->ht[0].used != 0) {dictEntry *de, *nextde;/* Note that rehashidx can't overflow as we are sure there are more* elements because ht[0].used != 0 */assert(d->ht[0].size > (unsigned long)d->rehashidx);// 跳过空桶,若超过可允许访问的空桶数量也返回while(d->ht[0].table[d->rehashidx] == NULL) {d->rehashidx++;if (--empty_visits == 0) return 1;}// de指向当前rehash节点de = d->ht[0].table[d->rehashidx];/* Move all the keys in this bucket from the old to the new hash HT */while(de) {uint64_t h;// 记录当前桶节点下一个nextde = de->next;/* Get the index in the new hash table */// 获取搬迁新桶索引h = dictHashKey(d, de->key) & d->ht[1].sizemask;// 当前桶节点指向新桶头节点de->next = d->ht[1].table[h];// 搬迁当前桶节点到新桶d->ht[1].table[h] = de;// 原桶使用量-1,新桶+1d->ht[0].used--;d->ht[1].used++;// 更新遍历的桶节点de = nextde;}//清空当前搬迁桶,并更新搬迁索引d->ht[0].table[d->rehashidx] = NULL;d->rehashidx++;}/* Check if we already rehashed the whole table... */// 若全部搬迁完毕,则清空原hash table,并将新hash table置为当前table,清空搬迁状态if (d->ht[0].used == 0) {zfree(d->ht[0].table);d->ht[0] = d->ht[1];_dictReset(&d->ht[1]);d->rehashidx = -1;return 0;}/* More to rehash... */return 1;
}

此外redis在空闲的时候也会充分利用起来进行rehash

/* Our hash table implementation performs rehashing incrementally while* we write/read from the hash table. Still if the server is idle, the hash* table will use two tables for a long time. So we try to use 1 millisecond* of CPU time at every call of this function to perform some rehashing.** The function returns 1 if some rehashing was performed, otherwise 0* is returned. */
// 当其他内存繁重的进程(比如将当前数据库状态保存到磁盘)无法运行时,所有 redis 数据库的后台 cron 作业将一个接一个地调用 IncrementallyRehash () ,并且在配置中打开 activerhash 标志。
int incrementallyRehash(int dbid) {/* Keys dictionary */if (dictIsRehashing(server.db[dbid].dict)) {dictRehashMilliseconds(server.db[dbid].dict,1);return 1; /* already used our millisecond for this loop... */}/* Expires */if (dictIsRehashing(server.db[dbid].expires)) {dictRehashMilliseconds(server.db[dbid].expires,1);return 1; /* already used our millisecond for this loop... */}return 0;
}// Source: https://github.com/redis/redis/blob/b8c67ce41b51247c02a639929e4fab20189afa1e/src/dict.c#L263 
/* Rehash in ms+"delta" milliseconds. The value of "delta" is larger * than 0, and is smaller than 1 in most cases. The exact upper bound * depends on the running time of dictRehash(d,100).*/
int dictRehashMilliseconds(dict *d, int ms) {if (d->iterators > 0) return 0;long long start = timeInMilliseconds();int rehashes = 0;// 在ms时间内运行rehashwhile(dictRehash(d,100)) {rehashes += 100;if (timeInMilliseconds()-start > ms) break;}return rehashes;
}

总结

redis rehash利用了和golang类似的方式,将真正的rehash操作放置到了dict增删改除中,有效地分摊了rehash性能消耗。

不同之处在于

  • 更进一步作为一个数据库应用产品利用了闲暇时间去进行rehash。

  • 为有效利用宝贵内存空间,添加了缩容,还添加可以在较高的使用率下的内存回收

  • 扩容前预估是否超出内存限制

  • 出于对响应时间的敏感性,redis还设置了最大空桶访问次数

  • redis没有考虑到桶overflow太多的情况

Ref

  1. https://codeburst.io/a-closer-look-at-redis-dictionary-implementation-internals-3fd815aae535

http://www.ppmy.cn/news/694855.html

相关文章

【大数据趋势】7月2日 汇率,美澳,恒指期货的大数据趋势概率分析。

数据源头之一 : 汇率变化 从程序模拟趋势来看&#xff0c;如果没有干预&#xff0c;极大概率要试探顶部7.375的位置。【位置1】从长期趋势来看&#xff0c;在一个上升通道中长期震荡上行&#xff0c;所以正常应该走2.2的路径【趋势2.2】 因为这轮上涨的动能很大&#xff0c;所…

中国石油大学(北京):数字化校园建设协同当先

面对变化的社会环境和培养创新型人才的目标&#xff0c;高校作为培养人才的重镇也在发生着变化。为了提高核心竞争力&#xff0c;越来越多的高校选择用信息化手段来优化自己的组织管理&#xff0c;中国石油大学&#xff08;北京&#xff09;&#xff08;文中简称&#xff1a;石…

Python结合正则式匹配与分句的方式提取文本中的金额

本博文将一个文本中的金额信息利用正则式和分句的方式提取出来。对于一个文本而言文本内容包含的信息多种多样&#xff0c;往往我们感兴趣的关键信息都只是简单的几个字符或者一个简单的句子&#xff0c;基于这样的应用场景对于一个上万字的文本而言怎样才能高效而且准确的获取…

市场营销新视角,从这一步开始与竞对拉开距离|身份云研究院

2022 年&#xff0c;所有市场人都在讨论 AIGC 将带来怎样的内容创作变革&#xff0c;在迅速拥抱新技术以及新机遇的同时&#xff0c;不断成长的生成式 AI 也为很多市场人带来了危机。 以 ChatGPT 为例&#xff0c;它可以搜集互联网中的权威信息&#xff0c;迅速撰写出一份你需要…

手机即时通服务器地址修改,手机即时通服务器地址修改

手机即时通服务器地址修改 内容精选 换一换 本文介绍使用云手机服务时需要了解的基本概念。云手机是一台包含原生安卓操作系统&#xff0c;具有虚拟手机功能的云服务器&#xff0c;简单来说&#xff0c;云手机云服务器Android OS。您可以远程实时控制云手机&#xff0c;实现安卓…

单点登录 SSO 解决方案选型指南|身份云研究院

单点登录&#xff08;SSO&#xff09;是目前企业降本增效以及提升用户体验的主流选择方案。常规的单点登录指“登录一次&#xff0c;即可访问所有互相信任的应用&#xff0c;用户不再需要记住每一个应用的账号密码”&#xff0c;这有效解决了密码疲劳、登录效率等问题&#xff…

如何使用 Authing 单点登录,集成 Discourse 论坛?

01 Authing 是什么&#xff1f; Authing 是国内首款以开发者为中心的全场景身份云产品&#xff0c;集成了所有主流身份认证协议&#xff0c;为企业和开发者提供完善安全的用户认证和访问管理服务。 以「API First」作为产品基石&#xff0c;把身份领域所有常用功能都进行了模…

服务了可口可乐、海底捞、某头部商业银行,我有这些体会

我非常喜欢巴西队的内马尔&#xff0c;他曾说&#xff1a;“你可能会看到我一秒钟、一分钟、一天不开心&#xff0c;但第二天你会看到我的笑脸。” 在 Authing 工作两年多了&#xff0c;在这期间&#xff0c;我为可口可乐、海底捞、某头部商业银行等客户做了交付&#xff0c;在…