Linux - 第13节 - 网络编程套接字(二)

news/2024/11/28 21:41:02/

目录

1.简单的TCP网络程序

1.1.读取信息函数read函数和发送信息函数write函数

1.2.简单的TCP网络程序(单进程版)

1.3.简单的TCP网络程序(多进程版)

1.4.简单的TCP网络程序(多线程版)

1.5.简单的TCP网络程序(线程池版)


1.简单的TCP网络程序

1.1.读取信息函数read函数和发送信息函数write函数

read函数:

read函数可以从套接字中读取数据。

参数: 

fd:特定的文件描述符,表示从该文件描述符中读取数据。
buf:数据的存储位置,表示将读取到的数据存储到该位置。
count:数据的个数,表示从该文件描述符中读取数据的字节数。
返回值:

如果返回值大于0,则表示本次实际读取到的字节个数。
如果返回值等于0,则表示对端已经把连接关闭了。
如果返回值小于0,则表示读取时遇到了错误。
注:

1.read返回值为0表示对端连接关闭。
这实际和本地进程间通信中的管道通信是类似的,当使用管道进行通信时,可能会出现如下情况:

(1)写端进程不写,读端进程一直读,此时读端进程就会被挂起,因为此时数据没有就绪。
(2)读端进程不读,写端进程一直写,此时当管道被写满后写端进程就会被挂起,因为此时空间没有就绪。
(3)写端进程将数据写完后将写端关闭,此时当读端进程将管道当中的数据读完后就会读到0。
(4)读端进程将读端关闭,此时写端进程就会被操作系统杀掉,因为此时写端进程写入的数据不会被读取。
这里的写端就对应客户端,如果客户端将连接关闭了,那么此时服务端将套接字当中的信息读完后就会读取到0,因此如果服务端调用read函数后得到的返回值为0,此时服务端就不必再为该客户端提供服务了。

2.使用read函数需要包含<unistd.h>头文件。

write函数:

write函数可以向套接字中写入数据。

参数:

fd:特定的文件描述符,表示将数据写入该文件描述符对应的套接字。
buf:需要写入的数据。
count:需要写入数据的字节个数。
返回值:

写入成功返回实际写入的字节数,写入失败返回-1,同时错误码会被设置。
当服务端调用read函数收到客户端的数据后,就可以再调用write函数将该数据再响应给客户端。
注:

1.使用write函数需要包含<unistd.h>头文件。

1.2.简单的TCP网络程序(单进程版)

创建serverTcp.cc文件,写入下图一所示的代码,创建clientTcp.cc文件,写入下图二所示的代码,创建log.hpp文件,写入下图三所示的代码,创建util.hpp文件,写入下图四所示的代码,创建Makefile文件,写入下图五所示的代码,使用make命令生成serverTcp和clientTcp可执行程序,创建两个选项卡,一个选项卡使用./udpServer 8081命令运行serverTcp可执行程序,一个选项卡使用./clientTcp 127.0.0.1 8081命令运行clientTcp可执行程序,再创建一个选项卡,使用netstat -lntp命令作为监控脚本,如下图六所示。

netstat -lntp命令可以看到我们服务器程序tcpServer的网络状态,Proto是服务类型这里为tcp的,Recv-Q是收到的消息数,这里为0,Send-Q是发送的消息数,这里为0,Local是本地绑定的IP地址,这里为0.0.0.0,即全地址绑定,Address是绑定的端口号,这里是8081,Foreign为允许访问的远端主机IP,这里为全部主机,Address为允许访问的远端主机的端口,这里为全部主机全部端口,State为当前套接字状态,这里为LISTEN监听状态。

serverTcp.cc文件:

#include "util.hpp"
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <pthread.h>class ServerTcp
{
public:ServerTcp(uint16_t port, const std::string &ip = "") : port_(port), ip_(ip), listenSock_(-1){}~ServerTcp(){}public:void init(){// 1. 创建socketlistenSock_ = socket(PF_INET, SOCK_STREAM, 0);if (listenSock_ < 0){logMessage(FATAL, "socket: %s", strerror(errno));exit(SOCKET_ERR);}logMessage(DEBUG, "socket: %s, %d", strerror(errno), listenSock_);// 2. bind绑定// 2.1 填充服务器信息struct sockaddr_in local; // 用户栈memset(&local, 0, sizeof local);local.sin_family = PF_INET;local.sin_port = htons(port_);ip_.empty() ? (local.sin_addr.s_addr = INADDR_ANY) : (inet_aton(ip_.c_str(), &local.sin_addr));// 2.2 本地socket信息,写入sock_对应的内核区域if (bind(listenSock_, (const struct sockaddr *)&local, sizeof local) < 0){logMessage(FATAL, "bind: %s", strerror(errno));exit(BIND_ERR);}logMessage(DEBUG, "bind: %s, %d", strerror(errno), listenSock_);// 3. 监听socket,为何要监听呢?tcp是面向连接的!if (listen(listenSock_, 5 /*后面再说*/) < 0){logMessage(FATAL, "listen: %s", strerror(errno));exit(LISTEN_ERR);}logMessage(DEBUG, "listen: %s, %d", strerror(errno), listenSock_);// 运行别人来连接你了}void loop(){while (true){struct sockaddr_in peer;socklen_t len = sizeof(peer);// 4. 获取连接, accept 的返回值是一个新的socket fd ??int serviceSock = accept(listenSock_, (struct sockaddr *)&peer, &len);if (serviceSock < 0){// 获取链接失败logMessage(WARINING, "accept: %s[%d]", strerror(errno), serviceSock);continue;}// 4.1 获取客户端基本信息uint16_t peerPort = ntohs(peer.sin_port);std::string peerIp = inet_ntoa(peer.sin_addr);logMessage(DEBUG, "accept: %s | %s[%d], socket fd: %d",strerror(errno), peerIp.c_str(), peerPort, serviceSock);// 5 提供服务, echo -> 小写 -> 大写// 5.0 v0 版本 -- 单进程 -- 一旦进入transService,主执行流,就无法进行向后执行,//只能提供完毕服务之后才能进行accepttransService(serviceSock, peerIp, peerPort);}}// 大小写转化服务// TCP && UDP: 支持全双工void transService(int sock, const std::string &clientIp, uint16_t clientPort){assert(sock >= 0);assert(!clientIp.empty());assert(clientPort >= 1024);char inbuffer[BUFFER_SIZE];while (true){ssize_t s = read(sock, inbuffer, sizeof(inbuffer) - 1); //我们认为我们读到的都是字符串if (s > 0){// read successinbuffer[s] = '\0';if(strcasecmp(inbuffer, "quit") == 0){logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}logMessage(DEBUG, "trans before: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);// 可以进行大小写转化了for(int i = 0; i < s; i++){if(isalpha(inbuffer[i]) && islower(inbuffer[i])) inbuffer[i] = toupper(inbuffer[i]);}logMessage(DEBUG, "trans after: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);write(sock, inbuffer, strlen(inbuffer));}else if (s == 0){// pipe: 读端一直在读,写端不写了,并且关闭了写端,读端会如何?s == 0,代表对端关闭// s == 0: 代表对方关闭,client 退出logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}else{logMessage(DEBUG, "%s[%d] - read: %s", clientIp.c_str(), clientPort, strerror(errno));break;}}// 只要走到这里,一定是client退出了,服务到此结束close(sock); // 如果一个进程对应的文件fd,打开了没有被归还,文件描述符泄漏!logMessage(DEBUG, "server close %d done", sock);}private:// sockint listenSock_;// portuint16_t port_;// ipstd::string ip_;
};static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " port ip" << std::endl;std::cerr << "example:\n\t" << proc << " 8081 127.0.0.1\n" << std::endl;}// ./ServerTcp local_port local_ip
int main(int argc, char *argv[])
{if(argc != 2 && argc != 3 ){Usage(argv[0]);exit(USAGE_ERR);}uint16_t port = atoi(argv[1]);std::string ip;if(argc == 3) ip = argv[2];ServerTcp svr(port, ip);svr.init();svr.loop();return 0;
}

clientTcp.cc文件:

#include "util.hpp"
// 2. 需要bind吗??需要,但是不需要自己显示的bind! 不要自己bind!!!!
// 3. 需要listen吗?不需要的!
// 4. 需要accept吗?不需要的!volatile bool quit = false;static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " serverIp serverPort" << std::endl;std::cerr << "Example:\n\t" << proc << " 127.0.0.1 8081\n"<< std::endl;
}
// ./clientTcp serverIp serverPort
int main(int argc, char *argv[])
{if (argc != 3){Usage(argv[0]);exit(USAGE_ERR);}std::string serverIp = argv[1];uint16_t serverPort = atoi(argv[2]);// 1. 创建socket SOCK_STREAMint sock = socket(AF_INET, SOCK_STREAM, 0);if (sock < 0){std::cerr << "socket: " << strerror(errno) << std::endl;exit(SOCKET_ERR);}// 2. connect,发起链接请求,你想谁发起请求呢??当然是向服务器发起请求喽// 2.1 先填充需要连接的远端主机的基本信息struct sockaddr_in server;memset(&server, 0, sizeof(server));server.sin_family = AF_INET;server.sin_port = htons(serverPort);inet_aton(serverIp.c_str(), &server.sin_addr);// 2.2 发起请求,connect 会自动帮我们进行bind!if (connect(sock, (const struct sockaddr *)&server, sizeof(server)) != 0){std::cerr << "connect: " << strerror(errno) << std::endl;exit(CONN_ERR);}std::cout << "info : connect success: " << sock << std::endl;std::string message;while (!quit){message.clear();std::cout << "请输入你的消息>>> ";std::getline(std::cin, message);if (strcasecmp(message.c_str(), "quit") == 0)quit = true;ssize_t s = write(sock, message.c_str(), message.size());if (s > 0){message.resize(1024);ssize_t s = read(sock, (char *)(message.c_str()), 1024);if (s > 0)message[s] = 0;std::cout << "Server Echo>>> " << message << std::endl;}else if (s <= 0){break;}}close(sock);return 0;
}

log.hpp文件:

#pragma once#include <cstdio>
#include <ctime>
#include <cstdarg>
#include <cassert>
#include <cstring>
#include <cerrno>
#include <stdlib.h>#define DEBUG 0
#define NOTICE 1
#define WARINING 2
#define FATAL 3const char *log_level[]={"DEBUG", "NOTICE", "WARINING", "FATAL"};// logMessage(DEBUG, "%d", 10);
void logMessage(int level, const char *format, ...)
{assert(level >= DEBUG);assert(level <= FATAL);char *name = getenv("USER");char logInfo[1024];va_list ap; // ap -> char*va_start(ap, format);vsnprintf(logInfo, sizeof(logInfo)-1, format, ap);va_end(ap); // ap = NULLFILE *out = (level == FATAL) ? stderr:stdout;fprintf(out, "%s | %u | %s | %s\n", \log_level[level], \(unsigned int)time(nullptr),\name == nullptr ? "unknow":name,\logInfo);
}

util.hpp文件:

#pragma once#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <ctype.h>
#include <unistd.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "log.hpp"#define SOCKET_ERR 1
#define BIND_ERR   2
#define LISTEN_ERR 3
#define USAGE_ERR  4
#define CONN_ERR   5#define BUFFER_SIZE 1024

Makefile文件:

.PHONY:all
all:clientTcp serverTcpclientTcp: clientTcp.ccg++ -o $@ $^ -std=c++11
serverTcp:serverTcp.ccg++ -o $@ $^ -std=c++11 -lpthread.PHONY:clean
clean:rm -f serverTcp clientTcp

注:

1.在UDP部分我们使用inet_addr函数将字符串风格的点分十进制IP地址转换成整型的四字节IP地址,我们也可以使用inet_aton函数来进行转换,inet_aton函数声明如下图所示,参数cp为要转换的字符串风格的点分十进制IP地址,参数inp为一个输出型参数,将转换后的整型的四字节IP地址赋值给inp指向变量。

使用inet_aton函数需要包含<sys/socket.h><netinet/in.h><arpa/inet.h>头文件。

2.UDP服务器的初始化操作只有两步,第一步就是创建套接字,第二步就是绑定。而TCP服务器是面向连接的,客户端在正式向TCP服务器发送数据之前,需要先与TCP服务器建立连接,然后才能与服务器进行通信。

因此TCP服务器需要时刻注意是否有客户端发来连接请求,此时就需要将TCP服务器创建的套接字设置为监听状态,设置监听状态需要使用listen函数,listen函数声明如下图所示。listen函数是将对应套接字从普通套接字转为监听套接字。

在初始化TCP服务器时,只有创建套接字成功、绑定成功、监听成功,此时TCP服务器的初始化才算完成。

参数:

sockfd:需要设置为监听状态的套接字对应的文件描述符。
backlog:全连接队列的最大长度。如果有多个客户端同时发来连接请求,此时未被服务器处理的连接就会放入连接队列,该参数代表的就是这个全连接队列的最大长度,一般不要设置太大,设置为5或10即可。
返回值:

监听成功返回0,监听失败返回-1,同时错误码会被设置。

使用listen函数需要包含<sys/types.h><sys/socket.h>头文件。

3.TCP服务器初始化后就可以开始运行了,但TCP服务器在与客户端进行网络通信之前,服务器需要先使用accept函数获取到客户端的连接请求。accept函数声明如下图所示。

accept函数的功能是获取一个连接。

参数:

sockfd:特定的监听套接字,表示从该监听套接字中获取连接。
addr:输出型参数,对端网络相关的属性信息,包括协议家族、IP地址、端口号等。与recvfrom函数的src_addr参数用法相同。
addrlen:输入输出型参数,调用时传入期望读取的addr结构体的长度,返回时代表实际读取到的addr结构体的长度。与recvfrom函数的addrlen参数用法相同。
返回值:

获取连接成功返回接收到的套接字的文件描述符,获取连接失败返回-1,同时错误码会被设置。

使用accept函数需要包含<sys/types.h><sys/socket.h>头文件。

4.accept函数返回值问题。

问题:accept函数返回的套接字是什么?

答:调用accept函数获取连接时,是从监听套接字当中获取的。如果accept函数获取连接成功,此时会返回接收到的套接字对应的文件描述符。

监听套接字与accept函数返回的套接字的作用:

· 监听套接字:用于获取客户端发来的连接请求。accept函数会不断从监听套接字当中获取新连接。
· accept函数返回的套接字:用于为本次accept获取到的连接提供服务。监听套接字的任务只是不断获取新连接,而真正为这些连接提供服务的套接字是accept函数返回的套接字,而不是监听套接字。

5.服务端获取连接的详细介绍。

accept函数获取连接时可能会失败,但TCP服务器不会因为获取某个连接失败而退出,因此服务端获取连接失败后应该继续获取连接。

使用./tcp_server 8081命令运行tcp服务器后,即使还没有编写客户端相关的代码,但是我们可以使用telnet 127.0.0.1 8081命令远程登录到该服务器,因为telnet底层实际采用的就是TCP协议,也可以打开浏览器在网页框中输入116.205.239.168:8081(假设云服务器主机IP地址为116.205.239.168),因为网页访问实际也采用的就是TCP协议(网页访问采用多线程,可能一次访问发起多次请求),如下图所示。

使用telnet命令或网页访问连接当前TCP服务器后可以看到,此时服务器接收到了一个连接,为该连接提供服务的套接字对应的文件描述符就是4。因为0、1、2是默认打开的,其分别对应标准输入流、标准输出流和标准错误流,而3号文件描述符在初始化服务器时分配给了监听套接字,因此当第一个客户端发起连接请求时,为该客户端提供服务的套接字对应的文件描述符就是4。

6.服务器accept获取连接请求后,下面当然就是要对获取到的连接进行处理。但此时为客户端提供服务的不是监听套接字,因为监听套接字获取到一个连接后会继续获取下一个请求连接,为对应客户端提供服务的套接字实际是accept函数返回的套接字,下面就将其称为“服务套接字”。

TCP是流式套接字,面对的是字节流,因此TCP服务器从服务套接字中读数据和写数据使用的是read接口和write接口。这里使用read函数读取数据后使用strcasecmp函数进行比较,如果客户端输入了quit那么服务端就不用为该客户提供服务了,如果客户端没有输入quit,那么就提供大小写转化服务。strcasecmp函数声明如下图所示,其功能是忽略大小写的比较。

使用strcasecmp函数需要包含<strings.h>头文件。

7.在从服务套接字中读取客户端发来的数据时,如果调用read函数后得到的返回值为0,或者读取出错了,此时就应该直接将服务套接字对应的文件描述符使用close函数关闭。因为文件描述符本质就是数组的下标,因此文件描述符的资源是有限的,如果我们一直占用,那么可用的文件描述符就会越来越少,因此服务完客户端后要及时关闭对应的文件描述符,否则会导致文件描述符泄漏。

8.在TCP服务端,读取数据是服务套接字中读取的,而写入数据的时候也是写入进服务套接字的。也就是说这里为客户端提供服务的套接字,既可以读取数据也可以写入数据,这就是TCP全双工的通信的体现。

前面学习的UDP服务端,读数据和写数据也是在一个套接字中进行的,因此UDP服务端也是全双工的。

9.客户端不需要进行绑定和监听:

· 服务端要进行绑定是因为服务端的IP地址和端口号必须要众所周知,不能随意改变。而客户端虽然也需要IP地址和端口号,但是客户端并不需要我们进行绑定操作,客户端连接服务端时系统会自动指定一个端口号给客户端。
· 服务端需要进行监听是因为服务端需要通过监听来获取新连接,但是不会有人主动连接客户端,因此客户端是不需要进行监听操作的。
此外,客户端必须要知道它要连接的服务端的IP地址和端口号,因此客户端除了要有自己的套接字之外,还需要知道服务端的IP地址和端口号,这样客户端才能够通过套接字向指定服务器进行通信。

10.由于客户端不需要绑定,也不需要监听,因此当客户端创建完套接字后就可以使用connect函数向服务端发起连接请求。connect函数声明如下图所示。

参数:

sockfd:特定的套接字,表示通过该套接字发起连接请求。

addr:对端网络相关的属性信息,包括协议家族、IP地址、端口号等。与sendto函数的dest_addr参数用法相同。

addrlen:传入的addr结构体的长度。与sendto函数的addrlen参数用法相同。

返回值:

连接或绑定成功返回0,连接失败返回-1,同时错误码会被设置。

使用connect函数需要包含<sys/types.h><sys/socket.h>头文件。

11.使用./serverTcp命令运行服务端后,该版本的服务端是单进程的调用transService函数提供服务的,而transService函数内部是死循环提供服务的,一旦调用了transService函数,该函数就不会退出,直到对应客户端退出为止,客户端退出了服务端才会再次调用transService函数给其他客户端提供服务,如下图所示。

问题:后连接的客户端为什么开始会显示连接成功?
答:当服务端在给第一个客户端提供服务期间,第二个客户端向服务端发起的连接请求时是成功的,只不过服务端没有调用accept函数将该连接获取上来罢了。

实际在底层会为我们维护一个连接队列,服务端没有accept的新连接就会放到这个连接队列当中,而这个连接队列的最大长度就是通过listen函数的第二个参数来指定的,因此服务端虽然没有获取第二个客户端发来的连接请求,但是在第二个客户端那里显示是连接成功的。
 

1.3.简单的TCP网络程序(多进程版)

创建serverTcp.cc文件,写入下图一所示的代码,创建clientTcp.cc文件,写入下图二所示的代码,创建log.hpp文件,写入下图三所示的代码,创建util.hpp文件,写入下图四所示的代码,创建Makefile文件,写入下图五所示的代码,使用make命令生成serverTcp和clientTcp可执行程序,创建两个选项卡,一个选项卡使用./udpServer 8081命令运行serverTcp可执行程序,一个选项卡使用./clientTcp 127.0.0.1 8081命令运行clientTcp可执行程序,再创建一个选项卡,使用./clientTcp 127.0.0.1 8081命令运行clientTcp可执行程序,如下图六所示。

serverTcp.cc文件:

#include "util.hpp"
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <pthread.h>class ServerTcp
{
public:ServerTcp(uint16_t port, const std::string &ip = "") : port_(port), ip_(ip), listenSock_(-1){}~ServerTcp(){}public:void init(){// 1. 创建socketlistenSock_ = socket(PF_INET, SOCK_STREAM, 0);if (listenSock_ < 0){logMessage(FATAL, "socket: %s", strerror(errno));exit(SOCKET_ERR);}logMessage(DEBUG, "socket: %s, %d", strerror(errno), listenSock_);// 2. bind绑定// 2.1 填充服务器信息struct sockaddr_in local; // 用户栈memset(&local, 0, sizeof local);local.sin_family = PF_INET;local.sin_port = htons(port_);ip_.empty() ? (local.sin_addr.s_addr = INADDR_ANY) : (inet_aton(ip_.c_str(), &local.sin_addr));// 2.2 本地socket信息,写入sock_对应的内核区域if (bind(listenSock_, (const struct sockaddr *)&local, sizeof local) < 0){logMessage(FATAL, "bind: %s", strerror(errno));exit(BIND_ERR);}logMessage(DEBUG, "bind: %s, %d", strerror(errno), listenSock_);// 3. 监听socket,为何要监听呢?tcp是面向连接的!if (listen(listenSock_, 5 /*后面再说*/) < 0){logMessage(FATAL, "listen: %s", strerror(errno));exit(LISTEN_ERR);}logMessage(DEBUG, "listen: %s, %d", strerror(errno), listenSock_);// 运行别人来连接你了}void loop(){while (true){struct sockaddr_in peer;socklen_t len = sizeof(peer);// 4. 获取连接, accept 的返回值是一个新的socket fd ??int serviceSock = accept(listenSock_, (struct sockaddr *)&peer, &len);if (serviceSock < 0){// 获取链接失败logMessage(WARINING, "accept: %s[%d]", strerror(errno), serviceSock);continue;}// 4.1 获取客户端基本信息uint16_t peerPort = ntohs(peer.sin_port);std::string peerIp = inet_ntoa(peer.sin_addr);logMessage(DEBUG, "accept: %s | %s[%d], socket fd: %d",strerror(errno), peerIp.c_str(), peerPort, serviceSock);// 5 提供服务, echo -> 小写 -> 大写// 5.1 v1.1 版本 -- 多进程版本  -- 也是可以的// 爷爷进程pid_t id = fork();if(id == 0){// 爸爸进程close(listenSock_);//建议// 又进行了一次fork,fork成功,创建出孙子进程后直接退出爸爸进程if(fork() > 0) exit(0);// 孙子进程 -- 没有爸爸 -- 孤儿进程 -- 被系统领养 -- 回收问题就交给了系统来回收transService(serviceSock, peerIp, peerPort);exit(0);}// 爷爷进程close(serviceSock); //这一步是一定要做的!// 爸爸进程直接终止,爷爷进程等待时立马得到退出码,释放僵尸进程状态pid_t ret = waitpid(id, nullptr, 0); //就用阻塞式assert(ret > 0);(void)ret;}}// 大小写转化服务// TCP && UDP: 支持全双工void transService(int sock, const std::string &clientIp, uint16_t clientPort){assert(sock >= 0);assert(!clientIp.empty());assert(clientPort >= 1024);char inbuffer[BUFFER_SIZE];while (true){ssize_t s = read(sock, inbuffer, sizeof(inbuffer) - 1); //我们认为我们读到的都是字符串if (s > 0){// read successinbuffer[s] = '\0';if(strcasecmp(inbuffer, "quit") == 0){logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}logMessage(DEBUG, "trans before: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);// 可以进行大小写转化了for(int i = 0; i < s; i++){if(isalpha(inbuffer[i]) && islower(inbuffer[i])) inbuffer[i] = toupper(inbuffer[i]);}logMessage(DEBUG, "trans after: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);write(sock, inbuffer, strlen(inbuffer));}else if (s == 0){// pipe: 读端一直在读,写端不写了,并且关闭了写端,读端会如何?s == 0,代表对端关闭// s == 0: 代表对方关闭,client 退出logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}else{logMessage(DEBUG, "%s[%d] - read: %s", clientIp.c_str(), clientPort, strerror(errno));break;}}// 只要走到这里,一定是client退出了,服务到此结束close(sock); // 如果一个进程对应的文件fd,打开了没有被归还,文件描述符泄漏!logMessage(DEBUG, "server close %d done", sock);}private:// sockint listenSock_;// portuint16_t port_;// ipstd::string ip_;
};static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " port ip" << std::endl;std::cerr << "example:\n\t" << proc << " 8081 127.0.0.1\n" << std::endl;}// ./ServerTcp local_port local_ip
int main(int argc, char *argv[])
{if(argc != 2 && argc != 3 ){Usage(argv[0]);exit(USAGE_ERR);}uint16_t port = atoi(argv[1]);std::string ip;if(argc == 3) ip = argv[2];ServerTcp svr(port, ip);svr.init();svr.loop();return 0;
}

clientTcp.cc文件:

#include "util.hpp"
// 2. 需要bind吗??需要,但是不需要自己显示的bind! 不要自己bind!!!!
// 3. 需要listen吗?不需要的!
// 4. 需要accept吗?不需要的!volatile bool quit = false;static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " serverIp serverPort" << std::endl;std::cerr << "Example:\n\t" << proc << " 127.0.0.1 8081\n"<< std::endl;
}
// ./clientTcp serverIp serverPort
int main(int argc, char *argv[])
{if (argc != 3){Usage(argv[0]);exit(USAGE_ERR);}std::string serverIp = argv[1];uint16_t serverPort = atoi(argv[2]);// 1. 创建socket SOCK_STREAMint sock = socket(AF_INET, SOCK_STREAM, 0);if (sock < 0){std::cerr << "socket: " << strerror(errno) << std::endl;exit(SOCKET_ERR);}// 2. connect,发起链接请求,你想谁发起请求呢??当然是向服务器发起请求喽// 2.1 先填充需要连接的远端主机的基本信息struct sockaddr_in server;memset(&server, 0, sizeof(server));server.sin_family = AF_INET;server.sin_port = htons(serverPort);inet_aton(serverIp.c_str(), &server.sin_addr);// 2.2 发起请求,connect 会自动帮我们进行bind!if (connect(sock, (const struct sockaddr *)&server, sizeof(server)) != 0){std::cerr << "connect: " << strerror(errno) << std::endl;exit(CONN_ERR);}std::cout << "info : connect success: " << sock << std::endl;std::string message;while (!quit){message.clear();std::cout << "请输入你的消息>>> ";std::getline(std::cin, message);if (strcasecmp(message.c_str(), "quit") == 0)quit = true;ssize_t s = write(sock, message.c_str(), message.size());if (s > 0){message.resize(1024);ssize_t s = read(sock, (char *)(message.c_str()), 1024);if (s > 0)message[s] = 0;std::cout << "Server Echo>>> " << message << std::endl;}else if (s <= 0){break;}}close(sock);return 0;
}

log.hpp文件:

#pragma once#include <cstdio>
#include <ctime>
#include <cstdarg>
#include <cassert>
#include <cstring>
#include <cerrno>
#include <stdlib.h>#define DEBUG 0
#define NOTICE 1
#define WARINING 2
#define FATAL 3const char *log_level[]={"DEBUG", "NOTICE", "WARINING", "FATAL"};// logMessage(DEBUG, "%d", 10);
void logMessage(int level, const char *format, ...)
{assert(level >= DEBUG);assert(level <= FATAL);char *name = getenv("USER");char logInfo[1024];va_list ap; // ap -> char*va_start(ap, format);vsnprintf(logInfo, sizeof(logInfo)-1, format, ap);va_end(ap); // ap = NULLFILE *out = (level == FATAL) ? stderr:stdout;fprintf(out, "%s | %u | %s | %s\n", \log_level[level], \(unsigned int)time(nullptr),\name == nullptr ? "unknow":name,\logInfo);
}

util.hpp文件:

#pragma once#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <ctype.h>
#include <unistd.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "log.hpp"#define SOCKET_ERR 1
#define BIND_ERR   2
#define LISTEN_ERR 3
#define USAGE_ERR  4
#define CONN_ERR   5#define BUFFER_SIZE 1024

Makefile文件:

.PHONY:all
all:clientTcp serverTcpclientTcp: clientTcp.ccg++ -o $@ $^ -std=c++11
serverTcp:serverTcp.ccg++ -o $@ $^ -std=c++11 -lpthread.PHONY:clean
clean:rm -f serverTcp clientTcp

注:

1.每有一个客户端进行连接,父进程就创建一个子进程来对对应客户端提供服务。每有一个客户端进行连接,父进程就会重新创建一个套接字(文件描述符)serviceSock并更新peerIp和peerPort,后面创建对应子进程时就会继承此刻父进程的这些信息,去给对应客户端提供服务。

父进程每一次与一个客户端建立连接,创建一个子进程给该客户端进行服务后,因为子进程已经继承了父进程中对应客户端的所有信息,而父子进程是两个不同的执行流,父进程此时可以关闭本执行流下的服务套接字了。由于父子进程是两个不同的执行流,每一个子进程都会继承父进程的监听套接字,因为子进程不需要使用监听套接字,所以建议子进程执行前先将监听套接字关闭。

父进程如果阻塞式的等待子进程,那就和单进程TCP服务器没有区别了,如果进行非阻塞等待是可以的,但是我们需要创建一个vector将所有的子进程pid保存起来,然后轮询式的非阻塞等待每一个子进程,比较麻烦。(如果不等待会有僵尸进程的问题)

对于父进程等待的问题,有两种方案: 

方案一(仅Linux下可使用):子进程在退出的时候会向父进程发送SIGCHLD信号,父进程可以使用signal函数重定义SIGCHLD信号的处理方法,让其直接退出即可。loop函数部分的代码如下图所示。该方案需要使用signal函数,因此该方案仅在Linux下可使用。

方案二(都可使用):主进程每次创建子进程时,先创建子进程然后让子进程创建孙子进程,然后关闭子进程,这样孙子进程就成为孤儿进程了,会被操作系统领养,孙子进程的回收问题就交给了操作系统。孙子进程去执行transService服务,执行完后被操作系统回收。主进程在waitpid回收等待子进程时,由于子进程会被直接终止,所以会立马得到退出码释放僵尸状态。oop函数部分的代码如下图所示。

2.创建子进程的成本较高,我们有没有成本低的方法呢?有的,使用多线程。

1.4.简单的TCP网络程序(多线程版)

创建serverTcp.cc文件,写入下图一所示的代码,创建clientTcp.cc文件,写入下图二所示的代码,创建log.hpp文件,写入下图三所示的代码,创建util.hpp文件,写入下图四所示的代码,创建Makefile文件,写入下图五所示的代码,使用make命令生成serverTcp和clientTcp可执行程序,创建两个选项卡,一个选项卡使用./udpServer 8081命令运行serverTcp可执行程序,一个选项卡使用./clientTcp 127.0.0.1 8081命令运行clientTcp可执行程序,再创建一个选项卡,使用./clientTcp 127.0.0.1 8081命令运行clientTcp可执行程序,如下图六所示。

serverTcp.cc文件:

#include "util.hpp"
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <pthread.h>class ServerTcp; // 申明一下ServerTcpclass ThreadData
{
public:uint16_t clientPort_;std::string clinetIp_;int sock_;ServerTcp *this_;
public:ThreadData(uint16_t port, std::string ip, int sock,  ServerTcp *ts): clientPort_(port), clinetIp_(ip), sock_(sock),this_(ts){}
};class ServerTcp
{
public:ServerTcp(uint16_t port, const std::string &ip = "") : port_(port), ip_(ip), listenSock_(-1){}~ServerTcp(){}public:void init(){// 1. 创建socketlistenSock_ = socket(PF_INET, SOCK_STREAM, 0);if (listenSock_ < 0){logMessage(FATAL, "socket: %s", strerror(errno));exit(SOCKET_ERR);}logMessage(DEBUG, "socket: %s, %d", strerror(errno), listenSock_);// 2. bind绑定// 2.1 填充服务器信息struct sockaddr_in local; // 用户栈memset(&local, 0, sizeof local);local.sin_family = PF_INET;local.sin_port = htons(port_);ip_.empty() ? (local.sin_addr.s_addr = INADDR_ANY) : (inet_aton(ip_.c_str(), &local.sin_addr));// 2.2 本地socket信息,写入sock_对应的内核区域if (bind(listenSock_, (const struct sockaddr *)&local, sizeof local) < 0){logMessage(FATAL, "bind: %s", strerror(errno));exit(BIND_ERR);}logMessage(DEBUG, "bind: %s, %d", strerror(errno), listenSock_);// 3. 监听socket,为何要监听呢?tcp是面向连接的!if (listen(listenSock_, 5 /*后面再说*/) < 0){logMessage(FATAL, "listen: %s", strerror(errno));exit(LISTEN_ERR);}logMessage(DEBUG, "listen: %s, %d", strerror(errno), listenSock_);// 运行别人来连接你了}static void *threadRoutine(void *args){pthread_detach(pthread_self()); //设置线程分离ThreadData *td = static_cast<ThreadData*>(args);td->this_->transService(td->sock_, td->clinetIp_, td->clientPort_);delete td;return nullptr;}void loop(){while (true){struct sockaddr_in peer;socklen_t len = sizeof(peer);// 4. 获取连接, accept 的返回值是一个新的socket fd ??int serviceSock = accept(listenSock_, (struct sockaddr *)&peer, &len);if (serviceSock < 0){// 获取链接失败logMessage(WARINING, "accept: %s[%d]", strerror(errno), serviceSock);continue;}// 4.1 获取客户端基本信息uint16_t peerPort = ntohs(peer.sin_port);std::string peerIp = inet_ntoa(peer.sin_addr);logMessage(DEBUG, "accept: %s | %s[%d], socket fd: %d",strerror(errno), peerIp.c_str(), peerPort, serviceSock);// 5 提供服务, echo -> 小写 -> 大写// 5.2 v2 版本 -- 多线程// 这里不需要进行关闭文件描述符吗??不需要啦// 多线程是会共享文件描述符表的!ThreadData *td = new ThreadData(peerPort, peerIp, serviceSock, this);pthread_t tid;pthread_create(&tid, nullptr, threadRoutine, (void*)td);}}// 大小写转化服务// TCP && UDP: 支持全双工void transService(int sock, const std::string &clientIp, uint16_t clientPort){assert(sock >= 0);assert(!clientIp.empty());assert(clientPort >= 1024);char inbuffer[BUFFER_SIZE];while (true){ssize_t s = read(sock, inbuffer, sizeof(inbuffer) - 1); //我们认为我们读到的都是字符串if (s > 0){// read successinbuffer[s] = '\0';if(strcasecmp(inbuffer, "quit") == 0){logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}logMessage(DEBUG, "trans before: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);// 可以进行大小写转化了for(int i = 0; i < s; i++){if(isalpha(inbuffer[i]) && islower(inbuffer[i])) inbuffer[i] = toupper(inbuffer[i]);}logMessage(DEBUG, "trans after: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);write(sock, inbuffer, strlen(inbuffer));}else if (s == 0){// pipe: 读端一直在读,写端不写了,并且关闭了写端,读端会如何?s == 0,代表对端关闭// s == 0: 代表对方关闭,client 退出logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}else{logMessage(DEBUG, "%s[%d] - read: %s", clientIp.c_str(), clientPort, strerror(errno));break;}}// 只要走到这里,一定是client退出了,服务到此结束close(sock); // 如果一个进程对应的文件fd,打开了没有被归还,文件描述符泄漏!logMessage(DEBUG, "server close %d done", sock);}private:// sockint listenSock_;// portuint16_t port_;// ipstd::string ip_;
};static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " port ip" << std::endl;std::cerr << "example:\n\t" << proc << " 8081 127.0.0.1\n" << std::endl;}// ./ServerTcp local_port local_ip
int main(int argc, char *argv[])
{if(argc != 2 && argc != 3 ){Usage(argv[0]);exit(USAGE_ERR);}uint16_t port = atoi(argv[1]);std::string ip;if(argc == 3) ip = argv[2];ServerTcp svr(port, ip);svr.init();svr.loop();return 0;
}

clientTcp.cc文件:

#include "util.hpp"
// 2. 需要bind吗??需要,但是不需要自己显示的bind! 不要自己bind!!!!
// 3. 需要listen吗?不需要的!
// 4. 需要accept吗?不需要的!volatile bool quit = false;static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " serverIp serverPort" << std::endl;std::cerr << "Example:\n\t" << proc << " 127.0.0.1 8081\n"<< std::endl;
}
// ./clientTcp serverIp serverPort
int main(int argc, char *argv[])
{if (argc != 3){Usage(argv[0]);exit(USAGE_ERR);}std::string serverIp = argv[1];uint16_t serverPort = atoi(argv[2]);// 1. 创建socket SOCK_STREAMint sock = socket(AF_INET, SOCK_STREAM, 0);if (sock < 0){std::cerr << "socket: " << strerror(errno) << std::endl;exit(SOCKET_ERR);}// 2. connect,发起链接请求,你想谁发起请求呢??当然是向服务器发起请求喽// 2.1 先填充需要连接的远端主机的基本信息struct sockaddr_in server;memset(&server, 0, sizeof(server));server.sin_family = AF_INET;server.sin_port = htons(serverPort);inet_aton(serverIp.c_str(), &server.sin_addr);// 2.2 发起请求,connect 会自动帮我们进行bind!if (connect(sock, (const struct sockaddr *)&server, sizeof(server)) != 0){std::cerr << "connect: " << strerror(errno) << std::endl;exit(CONN_ERR);}std::cout << "info : connect success: " << sock << std::endl;std::string message;while (!quit){message.clear();std::cout << "请输入你的消息>>> ";std::getline(std::cin, message);if (strcasecmp(message.c_str(), "quit") == 0)quit = true;ssize_t s = write(sock, message.c_str(), message.size());if (s > 0){message.resize(1024);ssize_t s = read(sock, (char *)(message.c_str()), 1024);if (s > 0)message[s] = 0;std::cout << "Server Echo>>> " << message << std::endl;}else if (s <= 0){break;}}close(sock);return 0;
}

log.hpp文件:

#pragma once#include <cstdio>
#include <ctime>
#include <cstdarg>
#include <cassert>
#include <cstring>
#include <cerrno>
#include <stdlib.h>#define DEBUG 0
#define NOTICE 1
#define WARINING 2
#define FATAL 3const char *log_level[]={"DEBUG", "NOTICE", "WARINING", "FATAL"};// logMessage(DEBUG, "%d", 10);
void logMessage(int level, const char *format, ...)
{assert(level >= DEBUG);assert(level <= FATAL);char *name = getenv("USER");char logInfo[1024];va_list ap; // ap -> char*va_start(ap, format);vsnprintf(logInfo, sizeof(logInfo)-1, format, ap);va_end(ap); // ap = NULLFILE *out = (level == FATAL) ? stderr:stdout;fprintf(out, "%s | %u | %s | %s\n", \log_level[level], \(unsigned int)time(nullptr),\name == nullptr ? "unknow":name,\logInfo);
}

util.hpp文件:

#pragma once#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <ctype.h>
#include <unistd.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "log.hpp"#define SOCKET_ERR 1
#define BIND_ERR   2
#define LISTEN_ERR 3
#define USAGE_ERR  4
#define CONN_ERR   5#define BUFFER_SIZE 1024

Makefile文件:

.PHONY:all
all:clientTcp serverTcpclientTcp: clientTcp.ccg++ -o $@ $^ -std=c++11
serverTcp:serverTcp.ccg++ -o $@ $^ -std=c++11 -lpthread.PHONY:clean
clean:rm -f serverTcp clientTcp

注:

1.创建一个ThreadData结构体,保存客户端网络相关的所有信息。这里与子进程一样,每有一个客户端进行连接,父进程就创建一个线程来对对应客户端提供服务。与子进程一样,主进程也不能阻塞式的等待线程,存在等待回收线程问题。这里的等待回收线程问题使用线程分离就可以很好的解决了。

这里的threadRoutine函数是类内函数,默认带有this指针参数,因此我们将threadRoutine函数设置为static的,但是static的threadRoutine函数无法访问某个类对象的成员变量,这里显式的传递this类对象即可。

2.这里不需要也不能使用close函数关闭文件描述符,因为多线程是会共享文件描述符表的。

3.对于服务端,当一个客户端连接来了才去给客户端创建线程或子进程提供服务,这样效率较低,我们可以用池化技术来解决该问题。

1.5.简单的TCP网络程序(线程池版)

创建serverTcp.cc文件,写入下图一所示的代码,创建clientTcp.cc文件,写入下图二所示的代码,创建log.hpp文件,写入下图三所示的代码,创建util.hpp文件,写入下图四所示的代码,创建ThreadPool.hpp文件,写入下图五所示的代码,创建Task.hpp文件,写入下图六所示的代码,创建Lock.hpp文件,写入下图七所示的代码,创建Makefile文件,写入下图八所示的代码,

使用make命令生成serverTcp和clientTcp可执行程序,创建两个选项卡,一个选项卡使用./udpServer 8081命令运行serverTcp可执行程序,一个选项卡使用./clientTcp 127.0.0.1 8081命令运行clientTcp可执行程序,再创建一个选项卡,使用./clientTcp 127.0.0.1 8081命令运行clientTcp可执行程序,如下图九所示。

serverTcp.cc文件:

#include "util.hpp"
#include "Task.hpp"
#include "ThreadPool.hpp"
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <pthread.h>class ServerTcp; // 申明一下ServerTcp// 大小写转化服务
// TCP && UDP: 支持全双工
void transService(int sock, const std::string &clientIp, uint16_t clientPort)
{assert(sock >= 0);assert(!clientIp.empty());assert(clientPort >= 1024);char inbuffer[BUFFER_SIZE];while (true){ssize_t s = read(sock, inbuffer, sizeof(inbuffer) - 1); //我们认为我们读到的都是字符串if (s > 0){// read successinbuffer[s] = '\0';if (strcasecmp(inbuffer, "quit") == 0){logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}logMessage(DEBUG, "trans before: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);// 可以进行大小写转化了for (int i = 0; i < s; i++){if (isalpha(inbuffer[i]) && islower(inbuffer[i]))inbuffer[i] = toupper(inbuffer[i]);}logMessage(DEBUG, "trans after: %s[%d]>>> %s", clientIp.c_str(), clientPort, inbuffer);write(sock, inbuffer, strlen(inbuffer));}else if (s == 0){// pipe: 读端一直在读,写端不写了,并且关闭了写端,读端会如何?s == 0,代表对端关闭// s == 0: 代表对方关闭,client 退出logMessage(DEBUG, "client quit -- %s[%d]", clientIp.c_str(), clientPort);break;}else{logMessage(DEBUG, "%s[%d] - read: %s", clientIp.c_str(), clientPort, strerror(errno));break;}}// 只要走到这里,一定是client退出了,服务到此结束close(sock); // 如果一个进程对应的文件fd,打开了没有被归还,文件描述符泄漏!logMessage(DEBUG, "server close %d done", sock);
}class ThreadData
{
public:uint16_t clientPort_;std::string clinetIp_;int sock_;ServerTcp *this_;public:ThreadData(uint16_t port, std::string ip, int sock, ServerTcp *ts): clientPort_(port), clinetIp_(ip), sock_(sock), this_(ts){}
};class ServerTcp
{
public:ServerTcp(uint16_t port, const std::string &ip = ""): port_(port),ip_(ip),listenSock_(-1),tp_(nullptr){}~ServerTcp(){}public:void init(){// 1. 创建socketlistenSock_ = socket(PF_INET, SOCK_STREAM, 0);if (listenSock_ < 0){logMessage(FATAL, "socket: %s", strerror(errno));exit(SOCKET_ERR);}logMessage(DEBUG, "socket: %s, %d", strerror(errno), listenSock_);// 2. bind绑定// 2.1 填充服务器信息struct sockaddr_in local; // 用户栈memset(&local, 0, sizeof local);local.sin_family = PF_INET;local.sin_port = htons(port_);ip_.empty() ? (local.sin_addr.s_addr = INADDR_ANY) : (inet_aton(ip_.c_str(), &local.sin_addr));// 2.2 本地socket信息,写入sock_对应的内核区域if (bind(listenSock_, (const struct sockaddr *)&local, sizeof local) < 0){logMessage(FATAL, "bind: %s", strerror(errno));exit(BIND_ERR);}logMessage(DEBUG, "bind: %s, %d", strerror(errno), listenSock_);// 3. 监听socket,为何要监听呢?tcp是面向连接的!if (listen(listenSock_, 5 /*后面再说*/) < 0){logMessage(FATAL, "listen: %s", strerror(errno));exit(LISTEN_ERR);}logMessage(DEBUG, "listen: %s, %d", strerror(errno), listenSock_);// 运行别人来连接你了// 4. 加载线程池tp_ = ThreadPool<Task>::getInstance();}void loop(){tp_->start();logMessage(DEBUG, "thread pool start success, thread num: %d", tp_->threadNum());while (true){struct sockaddr_in peer;socklen_t len = sizeof(peer);// 4. 获取连接, accept 的返回值是一个新的socket fd ??// 4.1 listenSock_: 监听 && 获取新的链接-> sock// 4.2 serviceSock: 给用户提供新的socket服务int serviceSock = accept(listenSock_, (struct sockaddr *)&peer, &len);if (serviceSock < 0){// 获取链接失败logMessage(WARINING, "accept: %s[%d]", strerror(errno), serviceSock);continue;}// 4.1 获取客户端基本信息uint16_t peerPort = ntohs(peer.sin_port);std::string peerIp = inet_ntoa(peer.sin_addr);logMessage(DEBUG, "accept: %s | %s[%d], socket fd: %d",strerror(errno), peerIp.c_str(), peerPort, serviceSock);// 5 提供服务, echo -> 小写 -> 大写// 5.3 v3.2Task t(serviceSock, peerIp, peerPort, transService);tp_->push(t);}}private:// sockint listenSock_;// portuint16_t port_;// ipstd::string ip_;// 引入线程池ThreadPool<Task> *tp_;
};static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " port ip" << std::endl;std::cerr << "example:\n\t" << proc << " 8080 127.0.0.1\n"<< std::endl;
}// ./ServerTcp local_port local_ip
int main(int argc, char *argv[])
{if (argc != 2 && argc != 3){Usage(argv[0]);exit(USAGE_ERR);}uint16_t port = atoi(argv[1]);std::string ip;if (argc == 3)ip = argv[2];ServerTcp svr(port, ip);svr.init();svr.loop();return 0;
}

clientTcp.cc文件:

#include "util.hpp"
// 2. 需要bind吗??需要,但是不需要自己显示的bind! 不要自己bind!!!!
// 3. 需要listen吗?不需要的!
// 4. 需要accept吗?不需要的!volatile bool quit = false;static void Usage(std::string proc)
{std::cerr << "Usage:\n\t" << proc << " serverIp serverPort" << std::endl;std::cerr << "Example:\n\t" << proc << " 127.0.0.1 8081\n"<< std::endl;
}
// ./clientTcp serverIp serverPort
int main(int argc, char *argv[])
{if (argc != 3){Usage(argv[0]);exit(USAGE_ERR);}std::string serverIp = argv[1];uint16_t serverPort = atoi(argv[2]);// 1. 创建socket SOCK_STREAMint sock = socket(AF_INET, SOCK_STREAM, 0);if (sock < 0){std::cerr << "socket: " << strerror(errno) << std::endl;exit(SOCKET_ERR);}// 2. connect,发起链接请求,你想谁发起请求呢??当然是向服务器发起请求喽// 2.1 先填充需要连接的远端主机的基本信息struct sockaddr_in server;memset(&server, 0, sizeof(server));server.sin_family = AF_INET;server.sin_port = htons(serverPort);inet_aton(serverIp.c_str(), &server.sin_addr);// 2.2 发起请求,connect 会自动帮我们进行bind!if (connect(sock, (const struct sockaddr *)&server, sizeof(server)) != 0){std::cerr << "connect: " << strerror(errno) << std::endl;exit(CONN_ERR);}std::cout << "info : connect success: " << sock << std::endl;std::string message;while (!quit){message.clear();std::cout << "请输入你的消息>>> ";std::getline(std::cin, message); // 结尾不会有\nif (strcasecmp(message.c_str(), "quit") == 0)quit = true;ssize_t s = write(sock, message.c_str(), message.size());if (s > 0){message.resize(1024);ssize_t s = read(sock, (char *)(message.c_str()), 1024);if (s > 0)message[s] = 0;std::cout << "Server Echo>>> " << message << std::endl;}else if (s <= 0){break;}}close(sock);return 0;
}

log.hpp文件:

#pragma once#include <cstdio>
#include <ctime>
#include <cstdarg>
#include <cassert>
#include <cstring>
#include <cerrno>
#include <stdlib.h>#define DEBUG 0
#define NOTICE 1
#define WARINING 2
#define FATAL 3const char *log_level[]={"DEBUG", "NOTICE", "WARINING", "FATAL"};// logMessage(DEBUG, "%d", 10);
void logMessage(int level, const char *format, ...)
{assert(level >= DEBUG);assert(level <= FATAL);char *name = getenv("USER");char logInfo[1024];va_list ap; // ap -> char*va_start(ap, format);vsnprintf(logInfo, sizeof(logInfo)-1, format, ap);va_end(ap); // ap = NULLFILE *out = (level == FATAL) ? stderr:stdout;fprintf(out, "%s | %u | %s | %s\n", \log_level[level], \(unsigned int)time(nullptr),\name == nullptr ? "unknow":name,\logInfo);
}

util.hpp文件:

#pragma once#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <ctype.h>
#include <unistd.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "log.hpp"#define SOCKET_ERR 1
#define BIND_ERR   2
#define LISTEN_ERR 3
#define USAGE_ERR  4
#define CONN_ERR   5#define BUFFER_SIZE 1024

ThreadPool.hpp文件:

#pragma once#include <iostream>
#include <cassert>
#include <queue>
#include <memory>
#include <cstdlib>
#include <pthread.h>
#include <unistd.h>
#include <sys/prctl.h>
#include "Lock.hpp"using namespace std;int gThreadNum = 5;template <class T>
class ThreadPool
{
private:ThreadPool(int threadNum = gThreadNum) : threadNum_(threadNum), isStart_(false){assert(threadNum_ > 0);pthread_mutex_init(&mutex_, nullptr);pthread_cond_init(&cond_, nullptr);}ThreadPool(const ThreadPool<T> &) = delete;void operator=(const ThreadPool<T>&) = delete;public:static ThreadPool<T> *getInstance(){static Mutex mutex;if (nullptr == instance) //仅仅是过滤重复的判断{LockGuard lockguard(&mutex); //进入代码块,加锁。退出代码块,自动解锁if (nullptr == instance){instance = new ThreadPool<T>();}}return instance;}//类内成员, 成员函数,都有默认参数thisstatic void *threadRoutine(void *args){pthread_detach(pthread_self());ThreadPool<T> *tp = static_cast<ThreadPool<T> *>(args);while (1){tp->lockQueue();while (!tp->haveTask()){tp->waitForTask();}//这个任务就被拿到了线程的上下文中T t = tp->pop();tp->unlockQueue();t(); // 让指定的先处理这个任务}}void start(){assert(!isStart_);for (int i = 0; i < threadNum_; i++){pthread_t temp;pthread_create(&temp, nullptr, threadRoutine, this);}isStart_ = true;}void push(const T &in){lockQueue();taskQueue_.push(in);choiceThreadForHandler();unlockQueue();}~ThreadPool(){pthread_mutex_destroy(&mutex_);pthread_cond_destroy(&cond_);}int threadNum(){return threadNum_;}private:void lockQueue() { pthread_mutex_lock(&mutex_); }void unlockQueue() { pthread_mutex_unlock(&mutex_); }bool haveTask() { return !taskQueue_.empty(); }void waitForTask() { pthread_cond_wait(&cond_, &mutex_); }void choiceThreadForHandler() { pthread_cond_signal(&cond_); }T pop(){T temp = taskQueue_.front();taskQueue_.pop();return temp;}private:bool isStart_;int threadNum_;queue<T> taskQueue_;pthread_mutex_t mutex_;pthread_cond_t cond_;static ThreadPool<T> *instance;// const static int a = 100;
};template <class T>
ThreadPool<T> *ThreadPool<T>::instance = nullptr;

Task.hpp文件:

#pragma once#include <iostream>
#include <string>
#include <functional>
#include <pthread.h>
#include "log.hpp"class Task
{
public://等价于// typedef std::function<void (int, std::string, uint16_t)> callback_t;using callback_t = std::function<void (int, std::string, uint16_t)>;
private:int sock_; // 给用户提供IO服务的sockuint16_t port_;  // client portstd::string ip_; // client ipcallback_t func_;  // 回调方法
public:Task():sock_(-1), port_(-1){}Task(int sock, std::string ip, uint16_t port, callback_t func): sock_(sock), ip_(ip), port_(port), func_(func){}void operator () (){logMessage(DEBUG, "线程ID[%p]处理%s:%d的请求 开始啦...",\pthread_self(), ip_.c_str(), port_);func_(sock_, ip_, port_);logMessage(DEBUG, "线程ID[%p]处理%s:%d的请求 结束啦...",\pthread_self(), ip_.c_str(), port_);}~Task(){}
};

Lock.hpp文件:

#pragma once#include <iostream>
#include <pthread.h>class Mutex
{
public:Mutex(){pthread_mutex_init(&lock_, nullptr);}void lock(){pthread_mutex_lock(&lock_);}void unlock(){pthread_mutex_unlock(&lock_);}~Mutex(){pthread_mutex_destroy(&lock_);}private:pthread_mutex_t lock_;
};class LockGuard
{
public:LockGuard(Mutex *mutex) : mutex_(mutex){mutex_->lock();std::cout << "加锁成功..." << std::endl;}~LockGuard(){mutex_->unlock();std::cout << "解锁成功...." << std::endl;}private:Mutex *mutex_;
};

Makefile文件:

.PHONY:all
all:clientTcp serverTcpclientTcp: clientTcp.ccg++ -o $@ $^ -std=c++11
serverTcp:serverTcp.ccg++ -o $@ $^ -std=c++11 -lpthread.PHONY:clean
clean:rm -f serverTcp clientTcp

注:

1.在服务端ServerTcp中新增线程池指针成员变量tp_,在init初始化的时候getInstance加载线程池,在loop函数中start启动线程池。loop函数中提供服务部分,每有一个客户端连接需要提供服务,就创建一个对应客户端的Task服务任务,然后将任务push放进线程池即可。

在Task.hpp文件中,定义了sock_、ip_、port_成员变量用来获取对应服务任务服务的客户端网络信息,类型重定义了一个回调函数方法callback_t并利用callback_t定义了func_成员变量用来获取服务方法(类型重定义回调函数方法callback_t时 using callback_t = std::function<void (int, std::string, uint16_t)> 与 typedef std::function<void (int, std::string, uint16_t)> callback_t 是等价的),定义了一个仿函数来执行回调函数方法。

在ThreadPool.hpp文件的线程池中,线程执行threadRoutine函数,threadRoutine函数中使用t()调用Task类的仿函数来执行回调函数,对客户端提供服务。

2.这里我们线程池中只创建了5个线程,而我们设置了对应的任务是死循环,因此这里线程池只能同时服务五个客户端。


http://www.ppmy.cn/news/68932.html

相关文章

Azure API 管理缺陷突出了 API 开发中的服务器端请求伪造风险

微软最近修补了其 Azure API 管理服务中的三个漏洞&#xff0c;其中两个漏洞启用了服务器端请求伪造 (SSRF) 攻击&#xff0c;这些攻击可能允许黑客访问内部 Azure 资产。 概念验证漏洞用于突出开发人员在尝试为自己的 API 和服务实施基于黑名单的限制时可能犯的常见错误。 W…

基于html+css的图展示57

准备项目 项目开发工具 Visual Studio Code 1.44.2 版本: 1.44.2 提交: ff915844119ce9485abfe8aa9076ec76b5300ddd 日期: 2020-04-16T16:36:23.138Z Electron: 7.1.11 Chrome: 78.0.3904.130 Node.js: 12.8.1 V8: 7.8.279.23-electron.0 OS: Windows_NT x64 10.0.19044 项目…

20230516使用python3确认三门问题

最烧脑的悖论&#xff0c;意识为什么会影响未来&#xff1f;颠覆你认知的三门问题播报文章 小红虾实验室 2023-04-09 06:08 四川 好看视频优创联盟,优质科学领域创作者 关注 对于懂概率的人来说&#xff0c;他中大奖的概率将成倍增加&#xff0c;甚至获奖率能够达到100%。 今…

支付从业者转型路在何方?

近来&#xff0c;整个支付行业&#xff0c;已经“卷”出了新高度。 营销上电销卷地推&#xff0c;工单卷电销&#xff0c;POS机具则是退押金卷不退押金&#xff0c;无押金卷退押金”&#xff0c;互相“卷”得不亦乐乎。 与此同时&#xff0c;支付圈子里聊的永远是“成本上升”…

kubernetes❀集群环境搭建

kubernetes❀集群环境搭建 2. kubernetes集群环境搭建2.1 前置知识点2.2 kubeadm 部署方式介绍2.3 安装要求2.4 最终目标2.5 准备环境2.6 环境初始化2.6.1 检查操作系统的版本2.6.2 主机名解析2.6.3 时间同步2.6.4 禁用iptable和firewalld服务2.6.5 禁用selinux2.6.6 禁用swap分…

动态规划专题

文章目录 数字三角形模型摘花生&#xff08;线性DP&#xff09;最低通行费&#xff08;线性DP曼哈顿距离 / 记忆化搜索&#xff09;⚡&#x1f388;方格取数&#xff08;线性DP&#xff09;传纸条 最长上升子序列模型怪盗基德的滑翔翼&#xff08;线性DP、LIS&#xff09;登山&…

Windows shell环境: 从git bash切换到msys2

文章目录 1. 目的2. msys2 环境 (Environment)3. 升级 MSYS2: 使用 pacman 滚动式升级整个系统4. 在 Windows Terminal 中增加显示 MSYS25. 使用 zsh6. VSCode 中的配置增加 MSYS2 终端配置 git 路径 7. 安装 C/C 依赖库安装 ag查询 bison 和 flex 的安装目录 8. References 1.…

嵌入式通信协议【Modbus】Modbus功能码的详细描述

一、读功能码 1、 01 (0x01)读线圈 在一个远程设备中&#xff0c;使用该功能码读取线圈的 1 至 2000 连续状态。请求 PDU 详细说明了起始地址&#xff0c;即指定的第一个线圈地址和线圈编号。从零开始寻址线圈。因此寻址线圈 1-16 为 0-15。 根据数据域的每个比特将响应报文…