一、基数排序(RadixSort)
基数排序(Radix sort)是一种非比较型整数排序算法。
1. 基本思想
原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。基数排序的方式可以采用LSD(Least significant digital)或MSD(Most significant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。
- MSD:先从高位开始进行排序,在每个关键字上,可采用计数排序
- LSD:先从低位开始进行排序,在每个关键字上,可采用桶排序
2. 实现逻辑
① 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。
② 从最低位开始,依次进行一次排序。
③ 这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
3. 动图演示
基数排序动态演示
分步图示说明:设有数组 array = {53, 3, 542, 748, 14, 214, 154, 63, 616},对其进行基数排序:
在上图中,首先将所有待比较数字统一为统一位数长度,接着从最低位开始,依次进行排序。
- 按照个位数进行排序。
- 按照十位数进行排序。
- 按照百位数进行排序。
排序后,数列就变成了一个有序序列。
4. 复杂度分析
时间复杂度:O(k*N)
空间复杂度:O(k + N)
稳定性:稳定
设待排序的数组R[1..n],数组中最大的数是d位数,基数为r(如基数为10,即10进制,最大有10种可能,即最多需要10个桶来映射数组元素)。
处理一位数,需要将数组元素映射到r个桶中,映射完成后还需要收集,相当于遍历数组一遍,最多元素数为n,则时间复杂度为O(n+r)。所以,总的时间复杂度为O(d*(n+r))。
基数排序过程中,用到一个计数器数组,长度为r,还用到一个rn的二位数组来做为桶,所以空间复杂度为O(rn)。
基数排序基于分别排序,分别收集,所以是稳定的。
5. 代码实现
int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{int maxData = data[0]; ///< 最大数/// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。for (int i = 1; i < n; ++i){if (maxData < data[i])maxData = data[i];}int d = 1;int p = 10;while (maxData >= p){//p *= 10; // Maybe overflowmaxData /= 10;++d;}return d;
/* int d = 1; //保存最大的位数int p = 10;for(int i = 0; i < n; ++i){while(data[i] >= p){p *= 10;++d;}}return d;*/
}
void radixsort(int data[], int n) //基数排序
{int d = maxbit(data, n);int *tmp = new int[n];int *count = new int[10]; //计数器int i, j, k;int radix = 1;for(i = 1; i <= d; i++) //进行d次排序{for(j = 0; j < 10; j++)count[j] = 0; //每次分配前清空计数器for(j = 0; j < n; j++){k = (data[j] / radix) % 10; //统计每个桶中的记录数count[k]++;}for(j = 1; j < 10; j++)count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中{k = (data[j] / radix) % 10;tmp[count[k] - 1] = data[j];count[k]--;}for(j = 0; j < n; j++) //将临时数组的内容复制到data中data[j] = tmp[j];radix = radix * 10;}delete []tmp;delete []count;
}
三、总结
基数排序与计数排序、桶排序这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
- 基数排序:根据键值的每位数字来分配桶;
- 计数排序:每个桶只存储单一键值;
- 桶排序:每个桶存储一定范围的数值;
基数排序不是直接根据元素整体的大小进行元素比较,而是将原始列表元素分成多个部分,对每一部分按一定的规则进行排序,进而形成最终的有序列表。