DeepAR代码详析(pytorch版)实现用电量预测

news/2024/11/19 5:34:48/

DeepAR代码详析(pytorch版)实现用电量预测 – 潘登同学的RNN学习笔记

文章目录

    • DeepAR代码详析(pytorch版)实现用电量预测 -- 潘登同学的RNN学习笔记
  • 数据集说明
    • 数据预处理代码
  • 构造模型
    • Loss函数
    • 评估指标相关
  • utils工具类
  • 训练模型

前言: 上次用Amazon中的glount-ts框架做了一个deepar的股价预测,但是我感觉用的是人家的API,不太好,所以今天来搂一把pytorch的deepar,看看效果如何

数据集说明

数据集说明

  • 2011 ~2014期间;
  • 370 个 家庭的用电量;
  • 频率为 15分钟,但是取的时候是以一个小时为单位取的;

下载地址,下载好解压后放到./data/elect/目录下

超参数

  • 滑动窗口长度: 192 换算为天数为 192/24 = 8
  • 已知序列(上下文)长度: 168 换算为天数 168/24 = 7
  • 预测序列长度: 24 换算为天数 24/24 = 1

了解数据预处理之前,我们需要明确我们的输入与输出

  • 输入:上下文长度的协变量(covariates) X t X_t Xt与上一时刻的结果 Z t − 1 Z_{t-1} Zt1,加上一个指示向量(表示哪一户人家,one-hot形式)
  • 输出:这一时刻的结果 Z t Z_t Zt

训练集与测试集

  • 训练集的开始时间是: 2011-01-01 00:00:00
  • 训练集的结束时间是: 2014-08-31 23:00:00
  • 测试集的开始时间是: 2014-08-25 00:00:00 因为要有7天的上下文
  • 测试集的结束时间是: 2014-09-07 23:00:00

数据预处理的几个关键

  • 有些家庭可能在2011的时候没有入住或者没有开始使用,要将前面全零的这部分去掉
  • 该文是将数据的时间维度按照星期几、小时数(比如上午8:00)、月份当作了协变量
  • 对协变量做数据归一化的时候,是按照协变量级别来做的(将所有家庭,所有时间点的星期几这一变量放到一起做归一化),因为在这里协变量都是周而复始的,所有家庭都共用相同的协变量,所以对对所有时间点,所有家庭的协变量做归一化其实跟只将所有家庭的写变量分不同时间点做归一化是一样的;我认为在协变量不同的情况下,就比如股价预测,每个公司的四价一量都不一样,如果做归一化的话(当前时间点的四价一量与过去时间点的四价一量表达的含义一定不一样),应该对每个时间点做归一化;

在这里插入图片描述

数据预处理代码

建议先把数据下载下来,不然会很慢

在这里插入图片描述

构造模型

deepAR的模型本质上是一个RNN,RNN cell使用的是LSTM,只是在最后输出接了两个全连接层,一个是预测均值的,一个是预测标准差的(一开始我认为只要接一个就可以,最后输出两个神经元即可,后来发现标准差的那个要经过一个softplus激活函数,这个激活函数是relu的一个改进版本,最后接这个的目的也是为了保证标准差为正)

输入的时候,还将one-hot经过embedding层(这都是比较常规的操作啦)

在这里插入图片描述

Loss函数

Loss的构造比较容易理解,在论文中我都没太看懂loss,但是代码里面我看懂了;思路就是根据预测出来的均值与标准差重构一个正态分布,再计算对数似然(就是计算label在该分布下的对数概率),最小化负平均似然即可

在这里插入图片描述

评估指标相关

在这里插入图片描述

utils工具类

工具函数中写了很多params,画图,评估函数,保存模型等的工具类,总之复用性很高,可以借鉴,我这里也贴出来

在这里插入图片描述

训练模型

训练模型这个操作就比较常规了,不详细讲解了,这个的日志写的也不错,贴一下吧;然后test也在evaluate中被调用,所以就没必要另说test了,test的代码也在构造模型中,也比较简单,是一个decoder的过程

在这里插入图片描述

写在最后,该代码不是我写的,源码在github上获取,这里只是我的解读,不懂的可以跟我探讨,总的来说我认为这个pytorch的复现版本写的很优秀,如果想改的话,只需要改改数据预处理部分即可; 如果真的想用该源码做股价预测,就改数据预处理部分吧…


http://www.ppmy.cn/news/651082.html

相关文章

时间序列预测17:CNN-LSTM 实现用电量/发电量预测

【时间序列预测/分类】 全系列60篇由浅入深的博文汇总:传送门 接上文,本文介绍了CNN-LSTM模型实现单、多变量多时间步预测的家庭用电量预测任务。 文章目录 1. CNN-LSTM1.1 CNN 模型1.2 完整代码 1. CNN-LSTM 1.1 CNN 模型 卷积神经网络(CN…

时间序列预测14:CNN 实现用电量/发电量预测

【时间序列预测/分类】 全系列60篇由浅入深的博文汇总:传送门 文章目录 前言适用于多时间步预测的CNN模型1 单变量多步预测 CNN 模型1.1 业务需求1.2 1D CNN 模型1.3 完整代码 前言 与其他机器学习算法不同,卷积神经网络能够从序列数据中自动学习特征&a…

实训1:拉格朗日法插补用户用电量数据缺失值

实训1:拉格朗日法插补用户用电量数据缺失值 实训任务: 读取missing_data.csv表查询缺失值位置 3.使用SciPy库中的interpolate模块下的lagrange对数据进行拉格朗日插值使用数据查看是否存在缺失值,不存在则说明插值成功 查询缺失值位置 is…

大工业用电计费及其相关知识

电费计算方法主要分为大工业用电和一般工商业用电、农业生产用电用电、居民生活用电。 1、概念 大工业用电指受电变压器(含不通过受电变压器的高压电动机)容量在315千伏安及以上的下列用电: (1)以电为原动力&#xf…

时间序列预测:用电量预测 02 KNN(K邻近算法)

🌮开发平台:jupyter lab 🍖运行环境:python3、TensorFlow2.x ----------------------------------------------- 2022.9.16 测验成功 ---------------------------------------------------------------- 1. 时间序列预测&#x…

线性回归入门案例 家庭用电量预测

本博客是线性回归的入门案例,仅用到一阶线性回归 代码中用到的数据集下载地址 [link] https://pan.baidu.com/s/12wSIOVMQ3zS3jK0FcwkTSw[ python3版本代码段 导包 #导包 import numpy as np import matplotlib.pyplot as plt import pandas as pd import time…

时间序列预测11:用电量预测 01 数据分析与建模

【时间序列预测/分类】 全系列60篇由浅入深的博文汇总:传送门 写在前面 通过之前有关LSTM的8遍基础教程和10篇处理时间序列预测任务的教程介绍,使用简单的序列数据示例,已经把LSTM的原理,数据处理流程,模型架构&#…

python用支持向量机回归(SVR)模型分析用电量预测电力消费

最近我们被客户要求撰写关于支持向量机回归的研究报告,包括一些图形和统计输出。 本文描述了训练支持向量回归模型的过程,该模型用于预测基于几个天气变量、一天中的某个小时、以及这一天是周末/假日/在家工作日还是普通工作日的用电量。 【视频】支持向…