很多初学者,都对标定概念模糊不清,分不清坐标系之间的关系,搞不清相机标定和机械手相机标定有什么关系,想当初自己也是一个人摸索了很久,本文将尽量给大家解释(更多技术分享,请关注微信公众号:善眸科技;更多技术交流请加入qq机器视觉联盟群:1020941040)。
我们通常所说的相机标定分为两种,一种是相机参数的标定,这一般用到张氏标定法,标定的作用是校正相机自身的畸变,利用校正得到的参数对图形进行处理后再呈现出来。关于这方面的资料,网上大把,我也不再此说明。一般的机械手定位也不会进行这个标定,因为现在的相机畸变还是很小的,精度可以满足大多数要求。
本文要介绍的是第二种,相机和机械手之间的标定,相机知道的是像素坐标,机械手是空间坐标系,所以手眼标定就是得到像素坐标系和空间机械手坐标系的坐标转化关系。手眼标定作用:建立相机坐标系和机械手坐标系之间的关系,即给机械手装上眼睛,让它去哪就去哪。
九点标定直接建立相机和机械手之间的坐标变换关系。让机械手的末端去走这9个点得到在机器人坐标系中的坐标,同时还要用相机识别9个点得到像素坐标。这样就得到了9组对应的坐标。由下面的式子可知至少需要3个点才能求出标定的矩阵。
常用的标定方法有:九点标定
(1)、标定,Halcon中进行9点标定的算子
%前面求出图像坐标
area_center(SortedRegions,Area,Row,Column) %
Column_robot := [275,225,170,280,230,180,295,240,190]
%机器人末端运动到9点的列坐标
Row_robot := [55,50,45,5,0,-5,-50,-50,-50]
%机器人末端运动到9点的行坐标
vector_to_hom_mat2d(Row,Column,Row_robot,Column_robot,HomMat2D)
%求解变换矩阵,HomMat2D是图像坐标和机械手坐标之间的关系
(2)、求解
affine_trans_point_2d(HomMat2D,Row2,Column2,Qx,Qy)
%由像素坐标和标定矩阵求出机器人基础坐标系中的坐标
一些特殊情况的解释:
有些情况中我们看到相机固定在一个地方,然后拍照找到目标,控制机械手去抓取,这种就很好理解。我们也叫做eye-to-hand 。
还有一种情况是相机固定在机械手上面,这种情况的标定过程实际上和相机和机械手分离的标定方法是一样的,因为相机拍照时,机械手会运动到相机标定的时候的位置,然后相机拍照,得到目标的坐标,再控制机械手,所以简单的相机固定在末端的手眼系统很多都是采用这种方法,标定的过程和手眼分离系统的标定是可以相同对待的。我们也叫做eye-in-hand 。
————————————————
版权声明:本文为CSDN博主「视觉鸟」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/chuoji2469384644/article/details/106996137