由于直接对 DDR3 进行控制很复杂,因此一般使用 MIG IP 来实现,同时为了更简单地使用 MIG IP,我们采用 AXI4 总线协议进行控制。下面首先介绍 MIG IP 的配置,然后看看官方 demo (里面包含一个仿真要用到的 DDR3 模型)及其仿真结果,最后进行我们自己的控制代码实现。
MIG IP 生成
在 IP Catalog 里搜索 MIG,如下
第一步里,勾选 AXI4 Interface 选项,使用 AXI4 接口
下一步是选择 FPGA 型号,读者自行选择自己的 FPGA 型号;下一步是选择控制器类型,我们直接选择 DDR3 SDRAM;这几步很简单,就不放图了。再下一步,Controller Options,这里要重点介绍下
首先配置 DDR3 的工作时钟,这个时钟也就是 DDR3_CLK_P/N,下一个 PHY to Controller Clock Ratio 是 FPGA 与 MIG 间通信使用的时钟(ui_clk)与 DDR3 时钟的比值,笔者使用 200MHz,因此这里设置为 2:1;Memory Type 需读者按照自己的 DDR 型号进行选择;Data Width 是 DDR3 用到的数据位宽,比如笔者用到 4 片 DDR,每片位宽 16bit,菊花链连接,因此这里需要设为 64。
下一步,这里的 Data Width 是 FPGA 与 MIG 通信用到的数据位宽,为方便起见,我使用了与 DDR 数据同位宽;下一个是设置读写优先级的,TDM 是读写同级,也可修改为读/写优先、循环读写等。
下一步,Input Clock Period 是设置 sys_clk_i 的频率,MIG IP 会使用这个时钟生成 DDR3_CK 信号以及供用户使用的 ui_clk,所有关于 MIG 的用户操作均应在 ui_clk 下进行;最下面的 Memory Address Mapping Selection 是 MIG 与 DDR 进行读写通信时的地址写入顺序。
下一步,System Clock 设为 No Buffer,因为我们用到的 sys_clk_i 是从 FPGA 内部提供的,如果是从外部引脚提供,则需要修改这里(有单引脚时钟,也有差分时钟信号);参考时钟直接使用 sys_clk_i;System Reset Polarity 设置 sys_rst 的极性,这里我设为低电平有效。
下一步是设置引脚阻抗;再下一步,勾选 Fixed Pin Out;再下一步,这里配置 DDR3 的引脚,可以手动配置也可以 read XDC 来配置,然后 Validate 一下,如果通过了,就可以下一步了(不 validate 那个 next 无法点击)。
下一步,由于这三个信号我均做为 FPGA 内部信号,因此都 No connect
再之后就是 summary 啥的,一路 next 到底就行。
- 注意事项
在使用 MIG IP 时,mmcm_locked 信号指示是否稳定给出 ui_clk,为高表示给出了稳定的 ui_clk;init_calib_complete 信号表示会否完成 DDR3 的初始化,为高表示完成初始化,在这之后才可以进行 DDR3 的读写。
注意 MIG IP 的 app_sr_req、app_ref_req、app_zq_req 要置零,否则无法完成 DDR 初始化,init_calib_complete 将无法拉高。
此外,MIG IP 有三个 reset 信号,分别是 sys_rst、ui_clk_sync_rst 和 aresetn 。ui_clk_sync_rst 是同步于 ui_clk 的 sys_rst,高电平有效;但 MIG 并不会因为 sys_rst 而 reset,而是通过 aresetn 进行 reset 的,且 aresetn 应当同步于 ui_clk。因此应当如下书写三者的关系
always @(posedge ui_clk) beginaresetn <= ~ui_clk_sync_rst;
end
官方 demo
在生成的 MIG IP 上右击,Open IP Example Design,会新建一个名为 mig_7series_0_ex.xpr 的工程,打开工程,可以看到一个顶层文件 example_top.v 和一个仿真文件 sim_tb_top.v
可以直接运行仿真,结果如下
在工程文件夹下, ./imports 文件夹中,有两个文件,ddr3_model.sv 和 ddr3_model_parameters.vh,前者是 ddr3 的模型,引用了后边这个 parameter 文件,parameter 文件里是关于 ddr3 模型的参数配置,在 ddr3_model 中修改 `define 值,可以配置 ddr3_model 的各类参数。后面仿真我们自己写的控制代码就要用到这个 DDR3 模型文件。
自己的FPGA实现
MIG IP 用到 AXI 总线协议,因此建议读者首先对该总线协议进行初步了解,具体可见我之前的文章。这里也推荐一个知乎大佬写的 AXI 协议介绍,链接在此。
其余不多说,代码如下,该模块自动完成从 W_FIFO 向 DDR 的写入,以及从 DDR 读数据到 R_FIFO,用户只需要读写两个 FIFO 即可
/* * file : DDR3_top.v* author : 今朝无言* Lab : WHU-EIS-LMSWE* date : 2023-04-21* version : v1.0* description : DDR3控制模块*/
module DDR3_top(
input clk_200M,
input rst_n,
output rst_busy,//--------------------ddr3------------------------
inout [63:0] ddr3_dq, //DQ,4片 x16 DDR的数据线output [14:0] ddr3_addr, //Address
output [2:0] ddr3_ba, //Bank Addressinout [7:0] ddr3_dqs_p, //DQ Select,0,2,4,6分别为四片DDR的DQSL(Lower Byte),
inout [7:0] ddr3_dqs_n, //1,3,5,7分别为四片DDR的DQSU(Upper Byte)
//Output with read data. Edge-aligned with read data.
//Input with write data. Center-aligned to write data.output [0:0] ddr3_ck_p, //4片DR3共用ck、cke、odt、cs信号,故[0:0]
output [0:0] ddr3_ck_n,
//differential clock inputs. All control and address input signals are sampled
//on the crossing of the positive edge of CK and the negative edge of CK#output [7:0] ddr3_dm, //Input Data Mask,0,2,4,6为DML,1,3,5,7为DMU
output [0:0] ddr3_cke, //Clock Enable
output [0:0] ddr3_cs_n, //Chip Select
output ddr3_ras_n, //Row Address Enable
output ddr3_cas_n, //Column Address Enable
output ddr3_we_n, //Write Enable
output [0:0] ddr3_odt, //On-die termination enable
output ddr3_reset_n,//-------------FPGA FIFO Control-------------------
input wr_en, //高电平有效
input [63:0] wrdat,
output full, //fifo_w fullinput rd_en, //高电平有效
output [63:0] rddat,
output empty //fifo_r empty
);
//本方案采用4片 MT41K256M16TW-107 芯片,每片 256M * 16bit = 512MB 容量
//8个Bank,故 BA 为 3 位;行地址用到全部的 15 根地址线,列地址用到 log2(256M/2^15/2^3)=10 根地址线parameter AXI_ID = 4'h00; //读写事务ID
parameter DATA_NUM = 32; //一次突发传输的数据个数,1~256localparam AXI_LEN = DATA_NUM - 1'b1;
localparam FIFO_LEN = 1024; //w_fifo、r_fifo的长度//----------------------------------state define-----------------------------------------
localparam S_IDLE = 8'h01; //等待初始化
localparam S_ARB = 8'h02; //判决接下来进行WR还是RD
localparam S_WR_ADDR = 8'h04; //写地址
localparam S_WR_DATA = 8'h08; //写数据
localparam S_WR_RESP = 8'h10; //写回复
localparam S_RD_ADDR = 8'h20; //读地址
localparam S_RD_DATA = 8'h40; //读数据
localparam S_RD_RESP = 8'h80; //读回复//---------------------------------------------------------------------------------------
reg [7:0] state = S_IDLE;
reg [7:0] next_state = S_IDLE;
//尽管 AXI 的读、写可以独立,然而 DDR 读写是分时复用,因此这里的读写也必须分时进行//FIFO
wire w_fifo_full;
wire w_fifo_empty;
wire r_fifo_full;
wire r_fifo_empty;reg w_fifo_rden = 1'b0;
reg r_fifo_wren = 1'b0;wire fifo_rst;wire [9:0] w_fifo_rddat_cnt;
wire [9:0] r_fifo_wrdat_cnt;wire w_fifo_wr_rst_busy;
wire w_fifo_rd_rst_busy;
wire r_fifo_wr_rst_busy;
wire r_fifo_rd_rst_busy;wire w_fifo_rst_busy;
wire r_fifo_rst_busy;//Application interface ports
wire ui_clk; //MIG输出的时钟,一切关于mig的操作均应在此时钟域下进行
wire ui_clk_sync_rst; //mig输出的rst信号,同步于ui_clk,高电平有效
wire mmcm_locked;
reg aresetn;
wire init_calib_complete; //指示MIG是否完成初始化wire app_sr_req;
wire app_ref_req;
wire app_zq_req;
wire app_sr_active;
wire app_ref_ack;
wire app_zq_ack;//Slave Interface Write Address Ports
wire [3:0] s_axi_awid;
reg [30:0] s_axi_awaddr; //4*512MB=2GB,对应 2^31 Byte,故 AXI 地址线位宽为 31
wire [7:0] s_axi_awlen;
wire [2:0] s_axi_awsize;
wire [1:0] s_axi_awburst;
wire [0:0] s_axi_awlock;
wire [3:0] s_axi_awcache;
wire [2:0] s_axi_awprot;
wire [3:0] s_axi_awqos;
reg s_axi_awvalid;
wire s_axi_awready;//Slave Interface Write Data Ports
wire [63:0] s_axi_wdata;
wire [7:0] s_axi_wstrb;
reg s_axi_wlast;
reg s_axi_wvalid;
wire s_axi_wready;//Slave Interface Write Response Ports
wire [3:0] s_axi_bid;
wire [1:0] s_axi_bresp;
wire s_axi_bvalid;
reg s_axi_bready;//Slave Interface Read Address Ports
wire [3:0] s_axi_arid;
reg [30:0] s_axi_araddr;
wire [7:0] s_axi_arlen;
wire [2:0] s_axi_arsize;
wire [1:0] s_axi_arburst;
wire [0:0] s_axi_arlock;
wire [3:0] s_axi_arcache;
wire [2:0] s_axi_arprot;
wire [3:0] s_axi_arqos;
reg s_axi_arvalid;
wire s_axi_arready;//Slave Interface Read Data Ports
wire [3:0] s_axi_rid;
wire [63:0] s_axi_rdata;
wire [1:0] s_axi_rresp;
wire s_axi_rlast;
wire s_axi_rvalid;
reg s_axi_rready;//ddr3读写请求
reg wr_ddr3_req;
reg rd_ddr3_req;//突发读写的已传输数据计数
reg [8:0] data_cnt;//------------------------------------write FIFO------------------------------------------
//异步FIFO 采用 First Word Fall Through 模式 1024*64
fifo_generator_DDR_W fifo_w(.rst (fifo_rst),.wr_clk (clk_200M),.rd_clk (ui_clk),.din (wrdat),.wr_en (wr_en),.rd_en (w_fifo_rden),.dout (s_axi_wdata),.full (w_fifo_full),.empty (w_fifo_empty),.rd_data_count (w_fifo_rddat_cnt), //仿真显示,w_fifo_rddat_cnt 和 r_fifo_wrdat_cnt 计数不可信,...IP 在做什么!!!.wr_data_count (),.wr_rst_busy (w_fifo_wr_rst_busy),.rd_rst_busy (w_fifo_rd_rst_busy)
);//------------------------------------read FIFO-------------------------------------------
//异步FIFO
fifo_generator_DDR_R fifo_r(.rst (fifo_rst),.wr_clk (ui_clk),.rd_clk (clk_200M),.din (s_axi_rdata),.wr_en (r_fifo_wren),.rd_en (rd_en),.dout (rddat),.full (r_fifo_full),.empty (r_fifo_empty),.rd_data_count (),.wr_data_count (r_fifo_wrdat_cnt),.wr_rst_busy (r_fifo_wr_rst_busy),.rd_rst_busy (r_fifo_rd_rst_busy)
);//----------------------------------MIG IP, AXI4-----------------------------------------
mig_7series_0 u_mig_7series_0 (// Memory interface ports.ddr3_addr (ddr3_addr), // output [14:0] ddr3_addr.ddr3_ba (ddr3_ba), // output [2:0] ddr3_ba.ddr3_cas_n (ddr3_cas_n), // output ddr3_cas_n.ddr3_ck_n (ddr3_ck_n), // output [0:0] ddr3_ck_n.ddr3_ck_p (ddr3_ck_p), // output [0:0] ddr3_ck_p.ddr3_cke (ddr3_cke), // output [0:0] ddr3_cke.ddr3_ras_n (ddr3_ras_n), // output ddr3_ras_n.ddr3_reset_n (ddr3_reset_n), // output ddr3_reset_n.ddr3_we_n (ddr3_we_n), // output ddr3_we_n.ddr3_dq (ddr3_dq), // inout [63:0] ddr3_dq.ddr3_dqs_n (ddr3_dqs_n), // inout [7:0] ddr3_dqs_n.ddr3_dqs_p (ddr3_dqs_p), // inout [7:0] ddr3_dqs_p.ddr3_cs_n (ddr3_cs_n), // output [0:0] ddr3_cs_n.ddr3_dm (ddr3_dm), // output [7:0] ddr3_dm.ddr3_odt (ddr3_odt), // output [0:0] ddr3_odt// Application interface ports.ui_clk (ui_clk), // output ui_clk.ui_clk_sync_rst (ui_clk_sync_rst), // output ui_clk_sync_rst.mmcm_locked (mmcm_locked), // output mmcm_locked.aresetn (aresetn), // input aresetn.init_calib_complete (init_calib_complete), // output init_calib_complete.app_sr_req (app_sr_req), // input app_sr_req.app_ref_req (app_ref_req), // input app_ref_req.app_zq_req (app_zq_req), // input app_zq_req.app_sr_active (app_sr_active), // output app_sr_active.app_ref_ack (app_ref_ack), // output app_ref_ack.app_zq_ack (app_zq_ack), // output app_zq_ack// Slave Interface Write Address Ports.s_axi_awid (s_axi_awid), // input [3:0] s_axi_awid.s_axi_awaddr (s_axi_awaddr), // input [30:0] s_axi_awaddr.s_axi_awlen (s_axi_awlen), // input [7:0] s_axi_awlen.s_axi_awsize (s_axi_awsize), // input [2:0] s_axi_awsize.s_axi_awburst (s_axi_awburst), // input [1:0] s_axi_awburst.s_axi_awlock (s_axi_awlock), // input [0:0] s_axi_awlock.s_axi_awcache (s_axi_awcache), // input [3:0] s_axi_awcache.s_axi_awprot (s_axi_awprot), // input [2:0] s_axi_awprot.s_axi_awqos (s_axi_awqos), // input [3:0] s_axi_awqos.s_axi_awvalid (s_axi_awvalid), // input s_axi_awvalid.s_axi_awready (s_axi_awready), // output s_axi_awready// Slave Interface Write Data Ports.s_axi_wdata (s_axi_wdata), // input [63:0] s_axi_wdata.s_axi_wstrb (s_axi_wstrb), // input [7:0] s_axi_wstrb.s_axi_wlast (s_axi_wlast), // input s_axi_wlast.s_axi_wvalid (s_axi_wvalid), // input s_axi_wvalid.s_axi_wready (s_axi_wready), // output s_axi_wready// Slave Interface Write Response Ports.s_axi_bid (s_axi_bid), // output [3:0] s_axi_bid.s_axi_bresp (s_axi_bresp), // output [1:0] s_axi_bresp.s_axi_bvalid (s_axi_bvalid), // output s_axi_bvalid.s_axi_bready (s_axi_bready), // input s_axi_bready// Slave Interface Read Address Ports.s_axi_arid (s_axi_arid), // input [3:0] s_axi_arid.s_axi_araddr (s_axi_araddr), // input [30:0] s_axi_araddr.s_axi_arlen (s_axi_arlen), // input [7:0] s_axi_arlen.s_axi_arsize (s_axi_arsize), // input [2:0] s_axi_arsize.s_axi_arburst (s_axi_arburst), // input [1:0] s_axi_arburst.s_axi_arlock (s_axi_arlock), // input [0:0] s_axi_arlock.s_axi_arcache (s_axi_arcache), // input [3:0] s_axi_arcache.s_axi_arprot (s_axi_arprot), // input [2:0] s_axi_arprot.s_axi_arqos (s_axi_arqos), // input [3:0] s_axi_arqos.s_axi_arvalid (s_axi_arvalid), // input s_axi_arvalid.s_axi_arready (s_axi_arready), // output s_axi_arready// Slave Interface Read Data Ports.s_axi_rid (s_axi_rid), // output [3:0] s_axi_rid.s_axi_rdata (s_axi_rdata), // output [63:0] s_axi_rdata.s_axi_rresp (s_axi_rresp), // output [1:0] s_axi_rresp.s_axi_rlast (s_axi_rlast), // output s_axi_rlast.s_axi_rvalid (s_axi_rvalid), // output s_axi_rvalid.s_axi_rready (s_axi_rready), // input s_axi_rready// System Clock Ports.sys_clk_i (clk_200M), // input sys_clk_i 200M.sys_rst (rst_n) // input sys_rst
);//---------------------------------------FSM----------------------------------------------
always @(posedge ui_clk or posedge ui_clk_sync_rst) beginif(ui_clk_sync_rst) beginstate <= S_IDLE;endelse beginstate <= next_state;end
endalways @(*) begincase(state)S_IDLE: beginif(mmcm_locked && init_calib_complete) beginnext_state <= S_ARB;endelse beginnext_state <= S_IDLE;endendS_ARB: beginif(wr_ddr3_req) beginnext_state <= S_WR_ADDR;endelse if(rd_ddr3_req && (s_axi_araddr != s_axi_awaddr)) begin //DDR3不空,才可读取next_state <= S_RD_ADDR;endelse beginnext_state <= S_ARB;endendS_WR_ADDR: beginif(s_axi_awvalid && s_axi_awready) beginnext_state <= S_WR_DATA;endelse beginnext_state <= S_WR_ADDR;endendS_WR_DATA: beginif(data_cnt >= DATA_NUM) beginnext_state <= S_WR_RESP;endelse beginnext_state <= S_WR_DATA;endendS_WR_RESP: beginif(s_axi_bvalid && s_axi_bready) beginnext_state <= S_ARB;endelse beginnext_state <= S_WR_RESP;endendS_RD_ADDR: beginif(s_axi_arvalid && s_axi_arready) beginnext_state <= S_RD_DATA;endelse beginnext_state <= S_RD_ADDR;endendS_RD_DATA: beginif(data_cnt >= DATA_NUM) begin //m_axi_rready && m_axi_rvalid && m_axi_rlastnext_state <= S_RD_RESP;endelse beginnext_state <= S_RD_DATA;endendS_RD_RESP: beginnext_state <= S_ARB;enddefault: beginnext_state <= S_IDLE;endendcase
end//-------------------------------------Control--------------------------------------------
assign s_axi_awid = AXI_ID;
assign s_axi_arid = AXI_ID;assign s_axi_awlen = AXI_LEN;
assign s_axi_arlen = AXI_LEN;assign s_axi_awsize = 3'd3; //每个数据的大小为2^awsize = 2^3 = 8Bytes = 64bit
assign s_axi_awburst = 2'b01; //突发传输模式为INCR,地址一直增加,递增的值为(2^Burst_size)
assign s_axi_awlock = 1'b0; //正常传输,非独占传输
assign s_axi_awcache = 4'b0000; //指明了总线中的存储类型
assign s_axi_awprot = 3'b000; //指明访问是否被允许的信号
assign s_axi_awqos = 4'b0000;
assign s_axi_wstrb = 8'hff; //写字节通道选通assign s_axi_arsize = 3'd3;
assign s_axi_arburst = 2'b01; //突发传输模式为INCR
assign s_axi_arlock = 1'b0;
assign s_axi_arcache = 4'b0000;
assign s_axi_arprot = 3'b000;
assign s_axi_arqos = 4'b0000;assign full = w_fifo_full;
assign empty = r_fifo_empty;always @(posedge ui_clk) beginaresetn <= ~ui_clk_sync_rst;
endassign fifo_rst = ~mmcm_locked;
//fifo的rst必须同时存在rd_clk和wr_clk,否则将初始化失败,一直处在rst_busy阶段assign app_sr_req = 1'b0; //此三者要置零,否则 refresh DDR
assign app_ref_req = 1'b0;
assign app_zq_req = 1'b0;assign w_fifo_rst_busy = w_fifo_wr_rst_busy | w_fifo_rd_rst_busy;
assign r_fifo_rst_busy = r_fifo_wr_rst_busy | r_fifo_rd_rst_busy;assign rst_busy = w_fifo_rst_busy | r_fifo_rst_busy | (~init_calib_complete);//-----------s_axi_awvalid--------------
always @(*) begincase(state)S_WR_ADDR: begins_axi_awvalid <= 1'b1;enddefault: begins_axi_awvalid <= 1'b0;endendcase
end//-----------s_axi_wvalid---------------
always @(*) begincase(state)S_WR_DATA: beginif(~w_fifo_empty && data_cnt < DATA_NUM) begins_axi_wvalid <= 1'b1;endelse begins_axi_wvalid <= 1'b0;endenddefault: begins_axi_wvalid <= 1'b0;endendcase
end//-----------s_axi_wlast---------------
always @(*) begincase(state)S_WR_DATA: beginif(data_cnt == DATA_NUM - 1) begins_axi_wlast <= 1'b1;endelse begins_axi_wlast <= 1'b0;endenddefault: begins_axi_wlast <= 1'b0;endendcase
end//-----------s_axi_bready---------------
always @(*) begincase(state)S_WR_RESP: begins_axi_bready <= 1'b1;enddefault: begins_axi_bready <= 1'b0;endendcase
end//-----------s_axi_arvalid--------------
always @(*) begincase(state)S_RD_ADDR: begins_axi_arvalid <= 1'b1;enddefault: begins_axi_arvalid <= 1'b0;endendcase
end//-----------s_axi_rready---------------
always @(*) begincase(state)S_RD_DATA: beginif(~r_fifo_full && data_cnt < DATA_NUM) begins_axi_rready <= 1'b1;endelse begins_axi_rready <= 1'b0;endendS_RD_RESP: begins_axi_rready <= 1'b1;enddefault: begins_axi_rready <= 1'b0;endendcase
end//------------w_fifo_rden---------------
always @(*) begincase(state)S_WR_DATA: beginw_fifo_rden <= s_axi_wvalid & s_axi_wready;enddefault: beginw_fifo_rden <= 1'b0;endendcase
end//------------r_fifo_wren---------------
always @(*) begincase(state)S_RD_DATA: beginr_fifo_wren <= s_axi_rready & s_axi_rvalid;enddefault: beginr_fifo_wren <= 1'b0;endendcase
end//-------------data_cnt-----------------
always @(posedge ui_clk) begincase(state)S_IDLE, S_ARB: begindata_cnt <= 9'd0;endS_WR_DATA: beginif(s_axi_wvalid && s_axi_wready) begindata_cnt <= data_cnt + 1'b1;endelse begindata_cnt <= data_cnt;endendS_RD_DATA: beginif(s_axi_rvalid && s_axi_rready) begindata_cnt <= data_cnt + 1'b1;endelse begindata_cnt <= data_cnt;endenddefault: begindata_cnt <= data_cnt;endendcase
end//------------s_axi_awaddr--------------
always @(posedge ui_clk) begincase(state)S_IDLE: begins_axi_awaddr <= 31'd0;endS_WR_RESP: beginif(s_axi_bvalid && s_axi_bready) begins_axi_awaddr <= s_axi_awaddr + DATA_NUM * 8; //s_axi_awaddr为字节地址,每次写NUM个64bit数据end //超出最大范围后自动回到0else begins_axi_awaddr <= s_axi_awaddr;endenddefault: begins_axi_awaddr <= s_axi_awaddr;endendcase
end//------------s_axi_araddr--------------
always @(posedge ui_clk) begincase(state)S_IDLE: begins_axi_araddr <= 31'd0;endS_RD_RESP: beginif(s_axi_rvalid && s_axi_rready) begins_axi_araddr <= s_axi_araddr + DATA_NUM * 8;endelse begins_axi_awaddr <= s_axi_awaddr;endenddefault: begins_axi_araddr <= s_axi_araddr;endendcase
end//------------wr_ddr3_req---------------
always @(posedge ui_clk) begincase(state)S_ARB: beginif(w_fifo_rddat_cnt >= DATA_NUM) beginwr_ddr3_req <= 1'b1; //w_FIFO中数据足够一次突发传输,发起写请求endelse beginwr_ddr3_req <= 1'b0;endenddefault: beginwr_ddr3_req <= 1'b0;endendcase
end//------------rd_ddr3_req---------------
always @(posedge ui_clk) begincase(state)S_ARB: beginif((FIFO_LEN - r_fifo_wrdat_cnt) > DATA_NUM) beginrd_ddr3_req <= 1'b1; //r_FIFO中空闲位置足够一次突发传输,发起读请求endelse beginrd_ddr3_req <= 1'b0;endenddefault: beginrd_ddr3_req <= 1'b0;endendcase
endendmodule
testbench 如下
`timescale 100ps/100psmodule DDR3_tb();reg clk_200M = 1'b1;
always #25 beginclk_200M <= ~clk_200M;
endreg rst_n;
wire rst_busy;//--------------------ddr3------------------------
wire [63:0] ddr3_dq; //DQ,4片 x16 DDR的数据线wire [14:0] ddr3_addr; //Address
wire [2:0] ddr3_ba; //Bank Addresswire [7:0] ddr3_dqs_p; //DQ Select,0,2,4,6分别为四片DDR的DQSL(Lower Byte),
wire [7:0] ddr3_dqs_n; //1,3,5,7分别为四片DDR的DQSU(Upper Byte)
//Output with read data. Edge-aligned with read data.
//Input with write data. Center-aligned to write data.wire [0:0] ddr3_ck_p; //4片DR3共用ck、cke、odt、cs信号,故[0:0]
wire [0:0] ddr3_ck_n;
//differential clock inputs. All control and address input signals are sampled
//on the crossing of the positive edge of CK and the negative edge of CK#wire [7:0] ddr3_dm; //Input Data Mask,0,2,4,6为DML,1,3,5,7为DMU
wire [0:0] ddr3_cke; //Clock Enable
wire [0:0] ddr3_cs_n; //Chip Select
wire ddr3_ras_n; //Row Address Enable
wire ddr3_cas_n; //Column Address Enable
wire ddr3_we_n; //Write Enable
wire [0:0] ddr3_odt; //On-die termination enable
wire ddr3_reset_n;//-------------FPGA FIFO Control-------------------
reg wr_en; //高电平有效
reg [63:0] wrdat = 64'd0;
wire full; //fifo_w fullreg rd_en; //高电平有效
wire [63:0] rddat;
wire empty; //fifo_r empty//--------------------DDR3 Control-----------------------------------
DDR3_top DDR3_top_inst(.clk_200M (clk_200M),.rst_n (rst_n),.rst_busy (rst_busy),//--------------------ddr3------------------------.ddr3_dq (ddr3_dq),.ddr3_addr (ddr3_addr),.ddr3_ba (ddr3_ba),.ddr3_dqs_p (ddr3_dqs_p),.ddr3_dqs_n (ddr3_dqs_n),.ddr3_ck_p (ddr3_ck_p),.ddr3_ck_n (ddr3_ck_n),.ddr3_dm (ddr3_dm),.ddr3_cke (ddr3_cke),.ddr3_cs_n (ddr3_cs_n),.ddr3_ras_n (ddr3_ras_n),.ddr3_cas_n (ddr3_cas_n),.ddr3_we_n (ddr3_we_n),.ddr3_odt (ddr3_odt),.ddr3_reset_n (ddr3_reset_n),//-------------FPGA FIFO Control-------------------.wr_en (wr_en),.wrdat (wrdat),.full (full),.rd_en (rd_en),.rddat (rddat),.empty (empty)
);//--------------------DDR3 Model-----------------------------------
ddr3_model ddr3_b1 (.rst_n (ddr3_reset_n),.ck (ddr3_ck_p),.ck_n (ddr3_ck_n),.cke (ddr3_cke),.cs_n (ddr3_cs_n),.ras_n (ddr3_ras_n),.cas_n (ddr3_cas_n),.we_n (ddr3_we_n),.dm_tdqs (ddr3_dm[1:0]),.ba (ddr3_ba),.addr (ddr3_addr),.dq (ddr3_dq[15:0]),.dqs (ddr3_dqs_p[1:0]),.dqs_n (ddr3_dqs_n[1:0]),.tdqs_n (),.odt (ddr3_odt)
);ddr3_model ddr3_b2 (.rst_n (ddr3_reset_n),.ck (ddr3_ck_p),.ck_n (ddr3_ck_n),.cke (ddr3_cke),.cs_n (ddr3_cs_n),.ras_n (ddr3_ras_n),.cas_n (ddr3_cas_n),.we_n (ddr3_we_n),.dm_tdqs (ddr3_dm[3:2]),.ba (ddr3_ba),.addr (ddr3_addr),.dq (ddr3_dq[31:16]),.dqs (ddr3_dqs_p[3:2]),.dqs_n (ddr3_dqs_n[3:2]),.tdqs_n (),.odt (ddr3_odt)
);ddr3_model ddr3_b3 (.rst_n (ddr3_reset_n),.ck (ddr3_ck_p),.ck_n (ddr3_ck_n),.cke (ddr3_cke),.cs_n (ddr3_cs_n),.ras_n (ddr3_ras_n),.cas_n (ddr3_cas_n),.we_n (ddr3_we_n),.dm_tdqs (ddr3_dm[5:4]),.ba (ddr3_ba),.addr (ddr3_addr),.dq (ddr3_dq[47:32]),.dqs (ddr3_dqs_p[5:4]),.dqs_n (ddr3_dqs_n[5:4]),.tdqs_n (),.odt (ddr3_odt)
);ddr3_model ddr3_b4 (.rst_n (ddr3_reset_n),.ck (ddr3_ck_p),.ck_n (ddr3_ck_n),.cke (ddr3_cke),.cs_n (ddr3_cs_n),.ras_n (ddr3_ras_n),.cas_n (ddr3_cas_n),.we_n (ddr3_we_n),.dm_tdqs (ddr3_dm[7:6]),.ba (ddr3_ba),.addr (ddr3_addr),.dq (ddr3_dq[63:48]),.dqs (ddr3_dqs_p[7:6]),.dqs_n (ddr3_dqs_n[7:6]),.tdqs_n (),.odt (ddr3_odt)
);//--------------------wrdat, rddat-----------------------------------
always @(posedge clk_200M) beginif(wr_en) beginwrdat <= wrdat + 1'b1;endelse beginwrdat <= wrdat;end
end//-----------------------tb----------------------------------------
initial beginwr_en <= 1'b0;rd_en <= 1'b0;rst_n <= 1'b1;#100;rst_n <= 1'b0;#100;rst_n <= 1'b1;wait(~rst_busy);#200;fork begin: w_rwrite(16);#100;write(16);#100;write(16);#100;// #10000;read(16);#100;write(16);#100;read(64);#2000;disable shut_down;$stop;endbegin: shut_down#100000;disable w_r;$stop;endjoin
endtask write;input [7:0] num;integer i;beginfor(i=0; i<num; i=i) beginwait(clk_200M);if(~full) beginwr_en <= 1'b1;i <= i+1;endelse beginwr_en <= 1'b0;endwait(~clk_200M);endwait(clk_200M);wr_en <= 1'b0;end
endtasktask read;input [7:0] num;integer i;beginfor(i=0; i<num; i=i) beginwait(clk_200M);if(~empty) beginrd_en <= 1'b1;i <= i+1;endelse beginrd_en <= 1'b0;endwait(~clk_200M);endwait(clk_200M);rd_en <= 1'b0;end
endtaskendmodule
仿真结果如下
放大 FIFO 读写部分的结果如下