我们平时在使用网站、小程序、APP的时候,很多产品都会有一个功能:消息推送,就像下图一样
实现这种功能的方式很多,下面给大家简单的总结一下:
1.什么是消息推送(push)
推送的场景比较多,比如有人关注我的公众号,这时我就会收到一条推送消息,以此来吸引我点击打开应用。
消息推送(push)通常是指网站的运营工作等人员,通过某种工具对用户当前网页或移动设备APP进行的主动消息推送。
消息推送一般又分为web端消息推送和移动端消息推送。
web端消息推送常见的诸如站内信、未读邮件数量、监控报警数量等,应用的也非常广泛。
在具体实现之前,咱们再来分析一下前边的需求,其实功能很简单,只要触发某个事件(主动分享了资源或者后台主动推送消息),web页面的通知小红点就会实时的+1就可以了。
通常在服务端会有若干张消息推送表,用来记录用户触发不同事件所推送不同类型的消息,前端主动查询(拉)或者被动接收(推)用户所有未读的消息数。
上面我一直提到拉、推,其实消息推送无非是推(push)和拉(pull)两种形式,下边我们逐个了解下。
2.短轮询
轮询(polling)应该是实现消息推送方案中最简单的一种,这里我们暂且将轮询分为短轮询和长轮询。
短轮询很好理解,指定的时间间隔,由浏览器向服务器发出HTTP请求,服务器实时返回未读消息数据给客户端,浏览器再做渲染显示。
一个简单的JS定时器就可以搞定,每秒钟请求一次未读消息数接口,返回的数据展示即可。
setInterval(() => {// 方法请求messageCount().then((res) => {if (res.code === 200) {this.messageCount = res.data}})
}, 1000);
短轮询实现固然简单,缺点也是显而易见,由于推送数据并不会频繁变更,无论后端此时是否有新的消息产生,客户端都会进行请求,势必会对服务端造成很大压力,浪费带宽和服务器资源。
3.长轮询
长轮询是对上边短轮询的一种改进版本,在尽可能减少对服务器资源浪费的同时,保证消息的相对实时性。
长轮询在中间件中应用的很广泛,比如Nacos和apollo配置中心,消息队列kafka、RocketMQ中都有用到长轮询。
插个题外话,大家认为:Nacos配置中心交互模型是push还是pull?感兴趣的小伙伴可以移步至:《Nacos配置中心交互模型是push还是pull?》
3.1 nacos配置中心的长轮询
Nacos长轮询的基本思路是通过Servlet3.0后提供的异步处理能力,把请求的任务添加至队列中,在有数据发生变更时,从队列中取出相应请求,然后响应请求,负责拉取数据的接口通过延时任务完成超时处理,如果等到设定的超时时间还没有数据变更时,就主动推送超时信息完成响应。
那么当config配置进行更新变化的时候就需要相关的应用进行跟着相关变化,这里就有个问题了那客户端怎么知道配置变化了呢,客户端是什么时候进行更新的呢?
其实这个问题又回到我们上面所讲的内容,消息推送只是一种应用场景,像我们配置的更新变化推送也和消息推送如出一辙,所以涉及更新方式也是2种,推和拉;
客户端主动从服务端定时拉取配置,如果有变化则进行替换。
服务端主动把变化的内容发送给客户端。
两种方式各有利弊,比如对于推的模式来讲,就需要服务端与客户端进行长连接,那么这种就会出现服务端需要耗费大量资源维护这个链接,并且还得加入心跳机制来维护连接有效性。
而对于拉的模式则需要客户端定时去服务端访问,那么就会存在时间间隔,也就保证不了数据的实时性。
那nacos采用哪种模式呢?
nacos是采用了拉模式是一种特殊的拉模式,也就是我们通常说的长轮询机制。
如果客户端拉取发现客户端与服务端配置是一致的(其实是通过MD5判断的)那么服务端会先拿住这个请求不返回,直到这段时间内配置有变化了才把刚才拿住的请求返回。
他的步骤是nacos服务端收到请求后检查配置是否发生变化,如果没有则开启定时任务,延迟29.5s执行。同时把当前客户端的连接请求放入队列。
那么此时服务端并没有将结果返回给客户端,当有以下2种情况的时候才触发返回:
- 等待29.5s后触发自动检查
- 在29.5s内有配置进行了更改
经过这2种情况才完成这次的pull操作。
这种的好处就是保证了客户端的配置能及时变化更新,也减少了轮询给服务端带来的压力。
3.2 apollo配置中心实现长轮询
apollo配置中心实现长轮询的方式,应用了一个类DeferredResult,它是在servelet3.0后经过Spring封装提供的一种异步请求机制,直意就是延迟结果。
DeferredResult可以允许容器线程快速释放占用的资源,不阻塞请求线程,以此接受更多的请求提升系统的吞吐量,然后启动异步工作线程处理真正的业务逻辑,处理完成调用DeferredResult.setResult(200)提交响应结果。
下边我们用长轮询来实现消息推送。
因为一个ID可能会被多个长轮询请求监听,所以我打算采用guava包提供的Multimap结构存放长轮询,一个key可以对应多个value。
一旦监听到key发生变化,对应的所有长轮询都会响应。
前端得到非请求超时的状态码,知晓数据变更,主动查询未读消息数接口,更新页面数据。
<!-- https://mvnrepository.com/artifact/com.google.guava/guava --><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>22.0</version></dependency>
package com.example.nacosconfig.controller;import com.google.common.collect.HashMultimap;
import com.google.common.collect.Multimap;
import com.google.common.collect.Multimaps;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.context.request.async.DeferredResult;import java.util.Collection;
import java.util.Date;@RestController
@RequestMapping("/polling")
public class PollingController {private final Long TIME_OUT = 2000l;//单位ms// 存放监听某个Id的长轮询集合// 线程同步结构public static Multimap<String, DeferredResult<String>> watchRequests = Multimaps.synchronizedMultimap(HashMultimap.create());/*** 设置监听*/@GetMapping(path = "watch/{id}")public DeferredResult<String> watch(@PathVariable String id) {// 延迟对象设置超时时间DeferredResult<String> deferredResult = new DeferredResult<>(TIME_OUT);// 异步请求完成时移除 key,防止内存溢出deferredResult.onCompletion(() -> {watchRequests.remove(id, deferredResult);});// 注册长轮询请求watchRequests.put(id, deferredResult);return deferredResult;}/*** 变更数据*/@GetMapping(path = "publish/{id}")public String publish(@PathVariable String id) {// 数据变更 取出监听ID的所有长轮询请求,并一一响应处理if (watchRequests.containsKey(id)) {Collection<DeferredResult<String>> deferredResults = watchRequests.get(id);for (DeferredResult<String> deferredResult : deferredResults) {deferredResult.setResult("我更新了" + new Date());}}return "success";}}
当请求超过设置的超时时间,会抛出AsyncRequestTimeoutException异常,这里直接用@ControllerAdvice全局捕获统一返回即可,前端获取约定好的状态码后再次发起长轮询请求,如此往复调用。
@ControllerAdvice
public class AsyncRequestTimeoutHandler {@ResponseStatus(HttpStatus.NOT_MODIFIED)@ResponseBody@ExceptionHandler(AsyncRequestTimeoutException.class)public String asyncRequestTimeoutHandler(AsyncRequestTimeoutException e) {System.out.println("异步请求超时");return "304";}
}
我们来测试一下,首先页面发起长轮询请求/polling/watch/10086监听消息更变,请求被挂起,不变更数据直至超时
再次发起了长轮询请求;紧接着手动变更数据/polling/publish/10086,长轮询得到响应
前端处理业务逻辑完成后再次发起请求,如此循环往复。
长轮询相比于短轮询在性能上提升了很多,但依然会产生较多的请求,这是它的一点不完美的地方。
3 iframe流
iframe流就是在页面中插入一个隐藏的< iframe>标签,通过在src中请求消息数量API接口,由此在服务端和客户端之间创建一条长连接,服务端持续向iframe传输数据。
传输的数据通常是HTML、或是内嵌的javascript脚本,来达到实时更新页面的效果。
这种方式实现简单,前端只要一个< iframe>标签搞定了
<iframe src="/iframe/message" style="display:none"></iframe>
服务端直接组装html、js脚本数据向response写入就行了
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;import javax.servlet.http.HttpServletResponse;
import java.io.IOException;@RestController
@RequestMapping("/iframe")
public class IframeController {@GetMapping(path = "message")public void message(HttpServletResponse response) throws IOException, InterruptedException {while (true) {response.setHeader("Pragma", "no-cache");response.setDateHeader("Expires", 0);response.setHeader("Cache-Control", "no-cache,no-store");response.setStatus(HttpServletResponse.SC_OK);response.getWriter().print(" <script type=\"text/javascript\">\n" +"parent.document.getElementById('clock').innerHTML = \"" + "100" + "\";" +"parent.document.getElementById('count').innerHTML = \"" + "100" + "\";" +"</script>");}}
}
但我个人不推荐,因为它在浏览器上会显示请求未加载完,图标会不停旋转,简直是强迫症杀手。
4 SSE(强烈推荐)
很多人可能不知道,服务端向客户端推送消息,其实除了可以用WebSocket这种耳熟能详的机制外,还有一种服务器发送事件(Server-sent events),简称SSE。
SSE它是基于HTTP协议的,我们知道一般意义上的HTTP协议是无法做到服务端主动向客户端推送消息的,但SSE是个例外,它变换了一种思路。
SSE在服务器和客户端之间打开一个单向通道,服务端响应的不再是一次性的数据包而是text/event-stream类型的数据流信息,在有数据变更时从服务器流式传输到客户端。
整体的实现思路有点类似于在线视频播放,视频流会连续不断的推送到浏览器,你也可以理解成,客户端在完成一次用时很长(网络不畅)的下载。
SSE与WebSocket作用相似,都可以建立服务端与浏览器之间的通信,实现服务端向客户端推送消息,但还是有些许不同:
- SSE 是基于HTTP协议的,它们不需要特殊的协议或服务器实现即可工作;WebSocket需单独服务器来处理协议。
- SSE 单向通信,只能由服务端向客户端单向通信;webSocket全双工通信,即通信的双方可以同时发送和接受信息。
- SSE 实现简单开发成本低,无需引入其他组件;WebSocket传输数据需做二次解析,开发门槛高一些。
- SSE 默认支持断线重连;WebSocket则需要自己实现。
- SSE 只能传送文本消息,二进制数据需要经过编码后传送;WebSocket默认支持传送二进制数据。
SSE 与 WebSocket 该如何选择?
“技术并没有好坏之分,只有哪个更合适”
SSE好像一直不被大家所熟知,一部分原因是出现了WebSockets,这个提供了更丰富的协议来执行双向、全双工通信。对于游戏、即时通信以及需要双向近乎实时更新的场景,拥有双向通道更具吸引力。
但是,在某些情况下,不需要从客户端发送数据。而你只需要一些服务器操作的更新。比如:站内信、未读消息数、状态更新、股票行情、监控数量等场景,SEE不管是从实现的难易和成本上都更加有优势。此外,SSE 具有WebSockets在设计上缺乏的多种功能,例如:自动重新连接、事件ID和发送任意事件的能力。
前端只需进行一次HTTP请求,带上唯一ID,打开事件流,监听服务端推送的事件就可以了
<script>let source = null;let userId = 7777if (window.EventSource) {// 建立连接source = new EventSource('http://localhost:7777/sse/sub/'+userId);setMessageInnerHTML("连接用户=" + userId);/*** 连接一旦建立,就会触发open事件* 另一种写法:source.onopen = function (event) {}*/source.addEventListener('open', function (e) {setMessageInnerHTML("建立连接。。。");}, false);/*** 客户端收到服务器发来的数据* 另一种写法:source.onmessage = function (event) {}*/source.addEventListener('message', function (e) {setMessageInnerHTML(e.data);});} else {setMessageInnerHTML("你的浏览器不支持SSE");}
</script>
服务端的实现更简单,创建一个SseEmitter对象放入sseEmitterMap进行管理
private static Map<String, SseEmitter> sseEmitterMap = new ConcurrentHashMap<>();/*** 创建连接** @date: 2022/7/12 14:51* @auther: 公众号:程序员小富*/
public static SseEmitter connect(String userId) {try {// 设置超时时间,0表示不过期。默认30秒SseEmitter sseEmitter = new SseEmitter(0L);// 注册回调sseEmitter.onCompletion(completionCallBack(userId));sseEmitter.onError(errorCallBack(userId));sseEmitter.onTimeout(timeoutCallBack(userId));sseEmitterMap.put(userId, sseEmitter);count.getAndIncrement();return sseEmitter;} catch (Exception e) {log.info("创建新的sse连接异常,当前用户:{}", userId);}return null;
}/*** 给指定用户发送消息** @date: 2022/7/12 14:51* @auther: 公众号:程序员小富*/
public static void sendMessage(String userId, String message) {if (sseEmitterMap.containsKey(userId)) {try {sseEmitterMap.get(userId).send(message);} catch (IOException e) {log.error("用户[{}]推送异常:{}", userId, e.getMessage());removeUser(userId);}}
}
注意: SSE不支持IE浏览器,对其他主流浏览器兼容性做的还不错。
5 MQTT
什么是 MQTT协议?
MQTT全称(Message Queue Telemetry Transport):一种基于发布/订阅(publish/subscribe)模式的轻量级通讯协议,通过订阅相应的主题来获取消息,是物联网(Internet of Thing)中的一个标准传输协议。
该协议将消息的发布者(publisher)与订阅者(subscriber)进行分离,因此可以在不可靠的网络环境中,为远程连接的设备提供可靠的消息服务,使用方式与传统的MQ有点类似。
TCP协议位于传输层,MQTT 协议位于应用层,MQTT 协议构建于TCP/IP协议上,也就是说只要支持TCP/IP协议栈的地方,都可以使用MQTT协议。
为什么要用 MQTT协议?
MQTT协议为什么在物联网(IOT)中如此受偏爱?而不是其它协议,比如我们更为熟悉的 HTTP协议呢?
首先HTTP协议它是一种同步协议,客户端请求后需要等待服务器的响应。而在物联网(IOT)环境中,设备会很受制于环境的影响,比如带宽低、网络延迟高、网络通信不稳定等,显然异步消息协议更为适合IOT应用程序。
HTTP是单向的,如果要获取消息客户端必须发起连接,而在物联网(IOT)应用程序中,设备或传感器往往都是客户端,这意味着它们无法被动地接收来自网络的命令。
通常需要将一条命令或者消息,发送到网络上的所有设备上。HTTP要实现这样的功能不但很困难,而且成本极高。
6 Websocket
websocket应该是大家都比较熟悉的一种实现消息推送的方式,上边我们在讲SSE的时候也和websocket进行过比较。
WebSocket是一种在TCP连接上进行全双工通信的协议,建立客户端和服务器之间的通信渠道。浏览器和服务器仅需一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。
springboot整合websocket,先引入websocket相关的工具包,和SSE相比额外的开发成本。
<!-- 引入websocket -->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId>
</dependency>
服务端使用@ServerEndpoint注解标注当前类为一个websocket服务器,客户端可以通过ws://localhost:7777/webSocket/10086来连接到WebSocket服务器端。
package com.example.nacosconfig.server;import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;import javax.websocket.OnMessage;
import javax.websocket.OnOpen;
import javax.websocket.Session;
import javax.websocket.server.PathParam;
import javax.websocket.server.ServerEndpoint;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.CopyOnWriteArraySet;@Component
@Slf4j
@ServerEndpoint("/websocket/{userId}")
public class WebSocketServer {//与某个客户端的连接会话,需要通过它来给客户端发送数据private Session session;private static final CopyOnWriteArraySet<WebSocketServer> webSockets = new CopyOnWriteArraySet<>();// 用来存在线连接数private static final Map<String, Session> sessionPool = new HashMap<String, Session>();/*** 链接成功调用的方法*/@OnOpenpublic void onOpen(Session session, @PathParam(value = "userId") String userId) {try {this.session = session;webSockets.add(this);sessionPool.put(userId, session);log.info("websocket消息: 有新的连接,总数为:" + webSockets.size());} catch (Exception e) {}}/*** 收到客户端消息后调用的方法*/@OnMessagepublic void onMessage(String message) {log.info("websocket消息: 收到客户端消息:" + message);}/*** 此为单点消息*/public void sendOneMessage(String userId, String message) {Session session = sessionPool.get(userId);if (session != null && session.isOpen()) {try {log.info("websocket消: 单点消息:" + message);session.getAsyncRemote().sendText(message);} catch (Exception e) {e.printStackTrace();}}}
}
前端初始化打开WebSocket连接,并监听连接状态,接收服务端数据或向服务端发送数据。
<script>var ws = new WebSocket('ws://localhost:7777/webSocket/10086');// 获取连接状态console.log('ws连接状态:' + ws.readyState);//监听是否连接成功ws.onopen = function () {console.log('ws连接状态:' + ws.readyState);//连接成功则发送一个数据ws.send('test1');}// 接听服务器发回的信息并处理展示ws.onmessage = function (data) {console.log('接收到来自服务器的消息:');console.log(data);//完成通信后关闭WebSocket连接ws.close();}// 监听连接关闭事件ws.onclose = function () {// 监听整个过程中websocket的状态console.log('ws连接状态:' + ws.readyState);}// 监听并处理error事件ws.onerror = function (error) {console.log(error);}function sendMessage() {var content = $("#message").val();$.ajax({url: '/socket/publish?userId=10086&message=' + content,type: 'GET',data: { "id": "7777", "content": content },success: function (data) {console.log(data)}})}
</script>
页面初始化建立websocket连接,之后就可以进行双向通信了,效果还不错
7 自定义推送
上边我们给我出了6种方案的原理和代码实现,但在实际业务开发过程中,不能盲目的直接拿过来用,还是要结合自身系统业务的特点和实际场景来选择合适的方案。
推送最直接的方式就是使用第三推送平台,毕竟钱能解决的需求都不是问题,无需复杂的开发运维,直接可以使用,省时、省力、省心,像goEasy、极光推送都是很不错的三方服务商。
一般大型公司都有自研的消息推送平台
消息推送系统内部是相当复杂的,诸如消息内容的维护审核、圈定推送人群、触达过滤拦截(推送的规则频次、时段、数量、黑白名单、关键词等等)、推送失败补偿非常多的模块,技术上涉及到大数据量、高并发的场景也很多。所以我们今天的实现方式在这个庞大的系统面前只是小打小闹。