【Elacticsearch】 分片副本机制,集群发现机制 ,负载机制,容错机制,扩容机制, 分片路由原理

news/2024/11/25 18:40:19/

集群发现机制

  Elasticsearch采用了master-slave模式, ES会在集群中选取一个节点成为主节点,只有Master节点有资格维护全局的集群状态,在有节点加入或者退出集群的时候,它会重新分配分片,并将集群最新状态发送给集群中其它节点,主节点会以周期性ping的方式以验证其它节点是否存活。

Elasticsearch的选举算法7.x之前基于Bully选举算法,7.x之后的ES,采用-种新的选主算法Raft ;

选举时机

  • 集群初始化

  • 集群的Master崩溃的时候

  • 任何一个节点发现当前集群中的Master节点没有得到n/2 + 1节点认可的时候,触发选举;

选举的基本原则

ES针对当前集群中所有的Master Eligible Node进行选举得到master节点,为了避免出现Split-brain现象,ES选择了分布式系统常见的quorum(多数派)思想,也就是只有获得了超过半数选票的节点才能成为master。在ES中使用 discovery.zen.minimum_master_nodes 属性设置quorum,这个属性一般设置为 eligibleNodesNum / 2 + 1

选举的流程说明如下

  1. 节点node向所有比自己大的节点发送选举消息(选举为election消息)
  2. 如果节点node得不到任何回复(回复为alive消息),那么节点node成为master,并向所有的其它节点宣布自己是master(宣布为Victory消息)
  3. 如果node得到了任何回复,node节点就一定不是master,同时等待Victory消息,如果等待Victory超时那么重新发起选举;

Bully算法

      Leader选举的基本算法之一。

在bully算法中,每个节点都有一个编号,只有编号最大的存活节点才能成为master节点。

Discovery模块:负责发现集群中的节点,以及选择主节点。ES支持多种不同Discovery类型选择,内置的实现称为Zen Discovery。

Zen Discovery封装了节点发现(Ping)、选主等实现过程。

算法假定所有节点都有一个惟一的ID,该ID对节点进行排序。 任何时候的当前Leader都是参与集群的最高id节点。 该算法的优点是易于实现,但是,当拥有最大 id 的节点处于不稳定状态的场景下会有问题,例如 Master 负载过重而假死,集群拥有第二大id 的节点被选为 新主,这时原来的 Master 恢复,再次被选为新主,然后又假死…

elasticsearch 通过推迟选举直到当前的 Master 失效来解决上述问题;但是容易产生脑裂,再通过 法定得票人数过半 解决脑裂;

     在 es 中,发送投票就是发送加入集群请求.在 handleJoinRequest 过程统计投票,收到的连接被存储到 pendingJoinRequests.
在 checkPendingJoinsAndElectIfNeeded 中检查投票是否足够,其中会过滤掉没有 Master 资格节点的投票;

代码实现逻辑:

1. 筛选activeMasters列表

Ping所有节点并获取PingResponse;

  1. 过滤有成为 Master 资格的节点
  2. 创建了三个列表;

    其中,joinedOnceActiveNodes.size <= activeNodes.size,差别在于是否含有 localnode, 其他的内容都一样,都是来自ping 的结果

Es的master就是从activeMasters列表或者masterCandidates列表选举出来,所以选举之前es首先需要得到这两个列表。Elasticsearch节点成员首先向集群中的所有成员发送Ping请求,elasticsearch默认等待discovery.zen.ping_timeout时间,然后elasticsearch针对获取的全部response进行过滤,筛选出其中activeMasters列表,activeMaster列表是其它节点认为的当前集群的Master节点

 2.筛选masterCandidates列表

masterCandidates列表是当前集群有资格成为Master的节点,如果我们在elasticsearch.yml中配置了如下参数,那么这个节点就没有资格成为Master节点,也就不会被筛选进入masterCandidates列表;

Elasticsearch的任意一个节点都可以设置node.master和node.data属性

  配置某个节点没有成为master资格 node.master:false;

3. 从activeMasters列表选举Master节点

activeMaster列表是其它节点认为的当前集群的Master节点列表,如果activeMasters列表不为空,elasticsearch会优先从activeMasters列表中选举,也就是对应着流程图中的蓝色框,选举的算法是Bully算法,笔者在前文中详细介绍了Bully算法,Bully算法会涉及到优先级比较, 在activeMasters列表优先级比较的时候,如果节点有成为master的资格,那么优先级比较高,如果activeMaster列表有多个节点具有master资格,那么选择id最小的节点

代码如下

private static int compareNodes(DiscoveryNode o1, DiscoveryNode o2) {if (o1.isMasterNode() && !o2.isMasterNode()) {return -1;}if (!o1.isMasterNode() && o2.isMasterNode()) {return 1;}return o1.getId().compareTo(o2.getId());
}public DiscoveryNode tieBreakActiveMasters(Collection<DiscoveryNode> activeMasters) {return activeMasters.stream().min(ElectMasterService::compareNodes).get(); 
}

4. 从masterCandidates列表选举Master节点

这一节对应的是红色流程图中红色部分,如果activeMaster列表为空,那么会在masterCandidates中选举,masterCandidates选举也会涉及到优先级比较,masterCandidates选举的优先级比较和masterCandidates选举的优先级比较不同。它首先会判断masterCandidates列表成员数目是否达到了最小数目discovery.zen.minimum_master_nodes。如果达到的情况下比较优先级,优先级比较的时候首先比较节点拥有的集群状态版本编号,然后再比较id,这一流程的目的是让拥有最新集群状态的节点成为master

public static int compare(MasterCandidate c1, MasterCandidate c2) {int ret = Long.compare(c2.clusterStateVersion, c1.clusterStateVersion);if (ret == 0) {ret = compareNodes(c1.getNode(), c2.getNode());}return ret;
}

5. 本地节点是master

经过上述选举之后,会选举出一个准master节点, 准master节点会等待其它节点的投票,如果有discovery.zen.minimum_master_nodes-1个节点投票认为当前节点是master,那么选举就成功,准master会等待discovery.zen.master_election.wait_for_joins_timeout时间,如果超时,那么就失败。在代码实现上准master通过注册一个回调来实现,同时借助了AtomicReference和CountDownLatch等并发构建实现

if (clusterService.localNode().equals(masterNode)) {final int requiredJoins = Math.max(0, electMaster.minimumMasterNodes() - 1); nodeJoinController.waitToBeElectedAsMaster(requiredJoins, masterElectionWaitForJoinsTimeout,new NodeJoinController.ElectionCallback() {@Overridepublic void onElectedAsMaster(ClusterState state) {joinThreadControl.markThreadAsDone(currentThread);nodesFD.updateNodesAndPing(state); // start the nodes FD}@Overridepublic void onFailure(Throwable t) {logger.trace("failed while waiting for nodes to join, rejoining", t);joinThreadControl.markThreadAsDoneAndStartNew(currentThread);}});

本地节点是Master的时候,Master节点会开启错误检测(NodeFaultDetection机制),它节点会定期扫描集群所有的成员,将失活的成员移除集群,同时将最新的集群状态发布到集群中,集群成员收到最新的集群状态后会进行相应的调整,比如重新选择主分片,进行数据复制等操作

6. 本地节点不是master

当前节点判定在集群当前状态下如果自己不可能是master节点,首先会禁止其他节点加入自己,然后投票选举出准Master节点。同时监听master发布的集群状态(MasterFaultDetection机制),如果集群状态显示的master节点和当前节点认为的master节点不是同一个节点,那么当前节点就重新发起选举。

非Master节点也会监听Master节点进行错误检测,如果成员节点发现master连接不上,重新加入新的Master节点,如果发现当前集群中有很多节点都连不上master节点,那么会重新发起选举。

Raft算法选主流程

Raft作为一种分布式一致性协议,其本身不止描述了选举过程,还提供了日志同步安全性的相关行为的描述;

其设计原则如下:

  • 容易理解
  • 减少状态的数量,尽可能消除不确定性

在Raft中,节点可能的状态有三种,其转换关系如下:

正常情况下,集群中只有一个Leader,其他节点全是Follower。Follower 都是被动接收请求,从不主动发送任何请求。Candidate - 候选人,候补者;应试者 是从Follower到Leader的中间状态。

Raft中引入任期(term) 的概念,每个term内最多只有一个Leader。term 在Raft算法中充当逻辑时钟的作用。服务器之间通信的时候会携带这个term,如果节点发现消息中的term小于自己的term,则拒绝这个消息;如果大于本节点的term,则更新自己的term。如果一个Candidate或者Leader发现自己的任期过期了,它会立即回到Follower状态。

Raft选举流程为:

  • 增加当前节点本地的current term,切换到Candidate状态;
  • 当前节点投自己一票,并且并行给其他节点发送RequestVote RPC (让大家投他) ;

然后等待其他节点的响应,会有如下三种结果:

  • 如果接收到大多数服务器的选票,那么就变成Leader。成为Leader后,向其他节点发送心跳消息来确定自己的地位并阻止新的选举。
  • 如果收到了别人的投票请求,且别人的term比自己的大,那么候选者退化为Follower;
  • 如果选举过程超时,再次发起一轮选举;

ES实现Raft算法选主流程

ES实现中,候选人不先投自己,而是直接并行发起RequestVote,这相当于候选人有投票给其他候选人的机会。这样的好处是可以在一定程度上避免3个节点同时成为候选人时,都投自己,无法成功选主的情况。

ES不限制每个节点在某个term上只能投一票, 节点可以投多票,这样会产生选出多个主的情况:

  • Node2被选为主,收到的投票为:Node2、 Node3;
  • Node3被选为主,收到的投票为:Node3、 Node1;

对于这种情况,ES的处理是让最后当选的Leader成功,作为Leader。如果收到RequestVote请求,他会无条件退出Leader状态。在本例中,Node2先被选为主,随后他收到Node3的RequestVote请求,那么他退出Leader状态,切换为CANDIDATE,并同意向发起RequestVote候选人投票。因此最终Node3成功当选为Leader。

动态维护参选节点列表

在此之前,我们讨论的前提是在集群节点数量不变的情况下,现在考虑下集群扩容、缩容、节点临时或永久离线时是如何处理的。在7.x之前的版本中,用户需要手工配置minimum_master_nodes, 来明确告诉集群过半节点数应该是多少,并在集群扩缩容时调整他。现在,集群可以自行维护。

在取消了discovery.zen.minimum_master_nodes 配置后,现在的做法不再记录“quorum”法定数量的具体数值,取而代之的是记录一个节点列表,这个列表中保存所有具备master资格的节点(有些情况下不是这样,例如集群原本只有1个节点,当增加到2个的时候,这个列表维持不变,因为如果变成2,当集群任意节点离线,都会导致无法选主。这时如果再增加一个节点,集群变成3个,这个列表中就会更新为3个节点),称为VotingConfiguration,他会持久化到集群状态中。

在节点加入或离开集群之后,Elasticsearch 会自动对VotingConfiguration 做出相应的更改,以确保集群具有尽可能高的弹性。在从集群中删除更多节点之前,等待这个调整完成是很重要的。你不能一次性停止半数或更多的节点。(感觉大面积缩容时候这个操作就比较感人了,一部分一部分缩)。默认情况下,ES自动维护VotingConfiguration。有新节点加入的时候比较好办,但是当有节点离开的时候,他可能是暂时的重启,也可能是永久下线。你也可以人工维护VotingConfiguration,配置项为:cluster.auto_shrink_voting_configuration,当你选择人工维护时,有节点永久下线,需要通过voting exclusions API将节点排除出去。如果使用默认的自动维护VotingConfiguration,也可以使用voting exclusions API来排除节点,例如一次性下线半数以上的节点。

如果在维护VotingConfiguration时发现节点数量为偶数,ES会将其中一个排除在外,保证VotingConfiguration是奇数。因为当是偶数的情况下,网络分区将集群划分为大小相等的两部分,那么两个子集群都无法达到“多数”的条件。

更新中。。。


http://www.ppmy.cn/news/479913.html

相关文章

联邦元学习综述

联邦元学习综述 张传尧1,2, 司世景1, 王健宗1&#xff0c;肖京1 1 平安科技&#xff08;深圳&#xff09;有限公司&#xff0c;广东 深圳 518063 2 中国科学技术大学&#xff0c;安徽 合肥 230026 摘要&#xff1a;随着移动设备的普及&#xff0c;海量的数据在不断产生。数据隐…

管理类联考——写作——素材篇——论说文——写作素材01—志篇:理想•信念

管理类专业学位联考 (写作能力) 论说文素材 01——志篇&#xff1a;理想信念 论文说材料: 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚韧不拔之志。 ——苏轼《晁错论》 一&#xff1a;道理论据 没有生活的理想&#xff0c;就没有理想的生活。 ——中国共…

NAT概述

为什么会有NAT 以前由于IPv4地址不足&#xff0c;无法满足网络的发展&#xff0c;IPv6还未广泛应用 为了节约IPv4地址&#xff0c;将IPv4地址分为公有地址和私有地址&#xff0c;企业内网都使用私有IPv4地址&#xff0c;而公网上的设备都使用公网IPv4地址 由于私有IPv4地址在不…

什么是最小二乘法

最小二乘法&#xff08;Least Squares Method&#xff09;是一种数学优化技术&#xff0c;它通过最小化误差的平方和来寻找数据的最佳拟合函数。在统计学和线性回归中&#xff0c;最小二乘法被广泛应用于拟合数据并建立变量间的关系模型。 下面我们以一个简单的线性回归问题为例…

Matlab实现模拟退火算法(附上完整源码)

模拟退火算法&#xff08;Simulated Annealing&#xff09;是一种全局优化算法&#xff0c;其基本思想是通过模拟物理退火过程来寻找最优解。该算法可以应用于各种优化问题&#xff0c;如函数优化、组合优化、图形优化等。 文章目录 步骤简单案例完整仿真源码下载 步骤 在Mat…

Linux桌面上的小动物,前方高能!我的OriginOS桌面上,出现了一群小动物

原标题&#xff1a;前方高能&#xff01;我的OriginOS桌面上&#xff0c;出现了一群小动物 对于许多用户来说&#xff0c;桌面无疑是手机系统中最容易忽视的地方。当密密麻麻而又整齐单一的图标铺满了桌面&#xff0c;时间久了未免产生视觉疲劳。而在不久前正式发布的OriginOS系…

0基础学习VR全景平台篇第46篇:底部菜单- 【开场地图】与【高清矩阵】的对比

大家好&#xff0c;欢迎观看蛙色VR官方——后台使用系列课程&#xff01; 这期 &#xff0c;我们将为大家讲解蛙色VR平台-【开场地图】与【高清矩阵】功能的区别 功能位置示意 一、功能具体应用 开场地图分为两种&#xff0c;分别是高德地图和手绘地图。 高德地图点位目前系统…

Kubernetes——构建平台工程的利器

作者&#xff5c;Loft Team 翻译&#xff5c;Seal软件 链接&#xff5c;https://loft.sh/blog/why-platform-engineering-teams-should-standardize-on-kubernetes/ 在当今快节奏、不断变化的技术环境中&#xff0c;平台工程团队一直面临着交付新的创新解决方案以满足不断变化的…