高效又稳定的ChatGPT大模型训练技巧总结,让训练事半功倍!

news/2024/12/22 20:19:19/

100e11be9949c1050e4056bc0cf40688.png

文|python

前言

近期,ChatGPT成为了全网热议的话题。ChatGPT是一种基于大规模语言模型技术(LLM, large language model)实现的人机对话工具。现在主流的大规模语言模型都采用Transformer网络,通过极大规模的数据进行自监督训练。但是,如何构建自监督训练数据?在基础的Transformer结构上,大家又做了哪些创新呢?为了保证训练过程高效且稳定,又有哪些黑科技呢?今天给大家介绍一篇来自人民大学的综述论文,为大家解密这些大模型的训练技巧。

论文地址:
https://arxiv.org/pdf/2303.18223.pdf

训练数据的收集与处理

大规模语言模型对训练数据的规模与质量都有更高的要求。那现在的大模型都用了什么语料?这些语料都发挥着怎样的作用?如何对语料做清洗和预处理?大模型还有什么特殊的细节需要我们去处理?

数据来源

数据来源上,大规模语言模型的训练数据可以一般性语料与特殊语料。一般性语料,如网页、书籍、对话文本,占比较大,可以在各种话题上为模型提供语言知识;而特殊语料,如多语言数据、科技语料、代码等,可以为模型带来解决特定任务的能力。现有的大模型训练语料的成分比例如下图所示:

712311f797e63a7133d72ef9e4687762.png

一般性语料中,网页语料规模较大,但其中包含Wikipedia等高质量语料的同时,还包含垃圾邮件等低质量语料,一般需要过滤处理。问答语料,如Reddit等社交媒体平台,可以潜在地提高模型回答问题的能力。社交媒体通常涉及多人对话,对话语料可以根据回复关系整理成树状结构,从而每一条支路都是一段完整的对话内容。书籍语料是少有的书面语长文本,可以帮助模型学习严谨的语言学知识,建模长距离依赖,提高生成内容的连贯性。

特殊语料中,多语言语料可以提升模型在翻译,多语言摘要、问答等任务上的能力。科技语料通过获取arXiv论文、教科书、数学网络社区等内容,可以帮助模型理解特殊符号、术语和表达式,提高模型在科技任务与推理上的表现。代码语料主要来自Stack Exchange等问答社区以及GitHub上的开源项目,包含代码、注释和文档。最近研究表明,代码语料可以提升模型复杂推理的能力(chain-of-thought),因其具有的长距离依赖以及内在精密的逻辑。

目前一些开源的语料的获取地址,可以参考我们以前的推送:训练ChatGPT的必备资源:语料、模型和代码库完全指南。

清洗与预处理

f2b8ff4f3f2827ef3d836afe8c8ff425.png

得到语料之后,一般人们通过上图的流程来清洗、预处理语料,提升质量。

具体而言,在第一步的语料清洗中,可以利用Wikipedia等样本作为正例训练一个二分类器筛选高质量语料。不过最近的研究表明,这一筛选方式可能带来偏见。所以现在更推荐使用启发式规则来筛选,比如剔除非目标任务语言、丢弃低perplexity数据、删去标点/符号过多或过长过短的句子、删除具有某些特定词汇(如html标签、链接、脏话、敏感词)的句子。

第二步是去重。包含大量重复词汇或短语的句子可以删掉;重复率(词/n-grams共现)过高的段落可以删掉;删除训练集中可能与测试集相关度过高的内容。这样可以提高训练集质量,缓解语言模型生成内容重复的问题,避免测试集泄露带来的过拟合问题。

第三步是通过关键词等方式剔除用户隐私信息(姓名、地址、电话等)

最后,三步清洗完毕,就可以上分词、准备训练了。分词方面,并没有什么黑科技。要么直接使用GPT-2等现成的分词器,要么对训练语料构建基于SentencePiece、Byte Pair Encoding等算法的分词方式。

一些注意细节

大模型的特点,导致在处理预训练语料时,需要注意一些特殊的细节:

  • 需要调节不同来源的语料的混合比例,不能直接基于语料规模。均衡的语料比例有助于提高模型的泛化能力,特定类型的语料可以提升模型特定的能力。

  • 语料规模要与模型的参数规模相配合。经验表明,给定算力,语料的token数与模型的参数个数相当时,模型的表现相对更好。所以不要一味地追求大语料,控制规模、提高质量、训练充分,也很重要。

  • 语料质量很重要(再次强调)。实验表明,大模型训练时,低质量的语料不用都比用了好。过多的重复数据甚至会让训练过程失效(崩溃或陷入无意义的局部最优)。

模型结构与任务

主流的大规模语言模型都是基于Transformers结构。从下图中可以看出,绝大多数模型均基于Casual decoder结构,即仅使用解码器(单向注意力遮掩)处理输入和输出内容。小编猜测是因为GPT-3展现了Casual decoder很强的能力之后,结合上该结构上的scaling law等研究,人们已经丧失了调研其他结构的兴趣。

另外两种大语言模型的结构,Encoder-decoder结构和最初做机器翻译的模型类似,采用两个不共享参数上的组件分别处理输入和输出内容。而Prefix decoder 和 Casual decoder很像,但是在输入部分内不采用单向注意力遮掩,而允许双向注意力。有点像是共享参数的Encoder-decoder结构。

0f883dd49efffe5b200198f9480f3cb6.png

除了Transformer的结构选取。上表还展示一些模型设计细节。具体包括以下几点:

  • Layer Normalization(层归一化)是确保模型收敛,缓解训练崩溃问题的重要手段。具体而言,经典的Pre Norm在每个多头注意力层与前馈网络层前加层归一化。Pre RMS Norm在Pre Norm的基础上,去掉了归一化中的均值部分,即仅就标准差做尺度缩放,让优化过程更平滑,是现在的主流推荐方法。此外,在Embedding后加Norm,虽然会让优化更平滑,但却会明显降低模型表现,所以现在一般不再使用。

  • 激活函数方面,传统的ReLU一般是不够看的。现在认为,SwiGLU 和 GeGLU 可以带来更好的表现,但相对于GeLU等激活函数而言,会带来更多的参数。

  • 位置信息编码,传统的有习得的绝对位置编码(Learned)与针对相对距离的相对位置编码(Relative)。后者针对测试时的更长语料时具有更好的外推性。最近,RoPE使用较为广泛,特点在于使用类似于核函数、三角旋转的方式,给query和key向量带上绝对位置编码,从而使得其内积中带有表达相对位置信息的项。

除此之外,上表中还汇总了部分超参数信息,如#L层数、#H头数、隐层规模、MCL最大上下文长度。

相较模型结构细节,预训练任务上的设计就很朴实无华了。最常见的预训练任务就是自回归语言模型,让语言模型逐一地根据输入历史预测下一个词,广泛地被GPT-3等语言模型所采纳。而像T5 和 GLM-130B 引入了降噪自编码训练目标,让模型还原输入内容中被遮掩的语段。

优化设置与技巧

大规模语言模型为了使训练过程更加高效、平稳,在训练过程中还有一系列的“黑科技”。具体而言,这些技巧可以:1、提升模型最终表现;2、提升模型收敛速度;3、避免模型收敛到loss很高的局部最优,或者不收敛;4、避免训练过程崩溃。现有的大模型公开的优化设置与技巧如下表所示。

4ecead5726945a3417bf4a0d700daad4.png

batch-size一般设置较大,为了更好地利用大规模训练数据,让模型训练过程更加稳定。比如使用8196的batch-size(每个batch处理1.6M个token输入)。GPT-3使用动态调整Batch-size的方式,使其处理的Token数从32K逐渐增大到3.2M。

学习率 一般较小,且包含warm up设置,以确保训练平稳。比如在前0.1%~0.5%的训练步骤中,设置一个线性的学习率递增。峰值学习率一般在 以下,比如GPT-3的学习率是。之后,会采用cosine decay strategy,逐渐减小学习率,在收敛前将学习率再下降10%左右。

优化器一般采用Adam、AdamW、以及Adafactor。其中,Adafactor是Adam的一个节约显存的变体。

其它稳定训练过程的技巧包括梯度裁剪(gradient clipping),以1.0为阈值;weight decay(类似于L2正则)率为0.1。即使如此,大模型的训练过程依然经常崩溃。PaLM 和 OPT 提出,在发生崩溃时可以从之前的一个中间节点开始继续训练,并且跳过之前那段导致崩溃的训练数据。GLM 发现embedding层经常有异常梯度,需要适当调整。

数据并行(Data parallelism) 是最常用的一种多卡训练方式。将训练数据分配到多块显卡上,分别计算前向和反向传播之后,再汇总梯度,更新参数,同步模型。该方法可以解决单卡batch过小的问题。

流水线并行(Pipeline parallelism) 在一块显卡上只存储、计算一些相邻的层。为了缓解时序操作等待带来的低效问题,GPipe 和 PipeDream 等工具提出在流水线中集合多个batch的数据,并异步更新参数。该方法可以缓解单卡跑不动batch-size为1的情况。

张量并行(Tensor parallelism) 对大矩阵乘法运算:中的A矩阵做拆分,从而使该运算转化成两个较小的矩阵的乘法结果的拼接:,而两个较小的矩阵乘法可以放在两块显卡上进行。该方法被 Megatron-LM、Colossal-AI等工具实现,可以缓解单一大矩阵乘法显存占用过高的问题,同时也会带来一定的通讯成本。

混合精度训练 使用半精度浮点计算来代替训练过程的部分参数(特别是前向传播部分),从而起到降低显存提升速度的作用。A100等显卡对半精度浮点计算做了优化,从而使混合精度训练更加有效。最近也有提出用Brain Floating Point (BF16)取代传统的FP16,增加指数位,减少有效数字。不过,虽然混合精度计算提速明显,但经验表明还是会降低准确度与模型表现。

01db6aa770ab32dbc2cf8e2fa3bc6e47.png

ZeRO 是DeepSpeed提出进一步优化数据并行的一个方案,用于提高模型参数之外的显存空间并行性。上图的混合精度计算流程就非常明显,有大量参数之外的储存资源消耗。事实上,1.5B参数的半精度GPT-2储存空间只有3GB,却无法在32GB的显卡上训练,就是这个原因。ZeRO主要思想包括,将梯度、动量等更新相关的信息也分布式地储存在每块卡上,这样汇总更新时每块卡分别更新对应位置的参数再同步即可;在更新梯度后释放梯度相关的显存等。由于该方法比较复杂,我们这里就不详述了。PyTorch的DeepSpeed和FSDP工具均支持ZeRO。

在实际使用中,上述优化设置通常组合使用。比如BLOOM模型的384块A100采用了8路数据并行,4路张量并行和12路流水线并行,并采用了基于BF16的混合精度训练策略。DeepSpeed, Colossal-AI,Alpa 等开源工具支持并行相关的功能。

除此之外,为了减少试错成本,GPT-4还提出了predictable scaling,通过较小的神经网络模型来预测大模型设置的可能表现。PyTorch的FSDP还支持让CPU分担部分计算压力。

结束语

大规模语言模型的训练已经不仅仅是一个科学问题,同时也是一个复杂的工程问题。科学家和工程师们必须携手合作,才能有效推动大模型的发展。各种训练技巧有助于提高大模型的训练效率和稳定性。然而,相关的工程细节仅通过论文只能了解皮毛。真正深入掌握,还需要仔细阅读开源项目代码并尝试运行。

b7b5fad571e6378e21517b6b63ac6cf9.jpeg后台回复关键词【入群

加入卖萌屋NLP、CV、搜推广与求职讨论群


http://www.ppmy.cn/news/47042.html

相关文章

腾讯新增长,AI扛大旗?

经历了疫情期间的低谷与波折,腾讯正在恢复它的活力。 3月22日,腾讯发布了2022年第四季度及全年财报。财报显示,2022全年营收为5546亿元人民币,归母净利润(Non-IFRS)为1156亿元人民币;2022年腾讯第四季度的营收为1450亿…

Python爬虫实战——获取电影影评

Python爬虫实战——获取电影影评 前言第三方库的安装示例代码效果演示结尾 前言 使用Python爬取指定电影的影评, 注意:本文仅用于学习交流,禁止用于盈利或侵权行为。 操作系统:windows10 家庭版 开发环境:Pycharm Co…

nginx 简介 第四章

一、Nginx简介 1、Nginx简介 Nginx(特点:占用内存少,并发能力强) Nginx是一个高性能的 HTTP 和反向代理服务器。 Nginx是一款轻量级的 Web 服务器/反向代理服务器及电子邮件 单台物理服务器可支持30 000~50 000个并发…

当,Kotlin Flow与Channel相逢

Flow之所以用起来香,Flow便捷的操作符功不可没,而想要熟练使用更复杂的操作符,那么需要厘清Flow和Channel的关系。 本篇文章构成: 1. Flow与Channel 对比 1.1 Flow核心原理与使用场景 原理 先看最简单的Demo: fun…

WMS智能仓储

子产品介绍篇--智能仓储 智能仓储 我们通常也称 WMS 系统。是一个实时的计算机软件系统,它能够按照运作的业务规则和运算法则,对信息、资源、行为、存货和分销运作进行更完美地管理,提高效率。 一. 仓储管理系统(wms)…

柔性数组【结构体和动态内存的结合】

全文目录 前言柔性数组的定义语法柔性数组的特点柔性数组的使用柔性数组的优势 前言 很多人可能没有听过柔性数组这个概念,但是在C99中柔性数组是确实存在的。我个人感觉有点像动态内存和结构体的结合。 柔性数组的定义语法 结构中的最后一个元素允许是未知大小的…

IO多路复用 学习笔记 (阻塞 IO,非阻塞IO,select 模型,poll 模型,epoll 模型)

参考了一下网络资源做的笔记 什么是IO多路复用 就是用一个线程或者一个进程监控文件描述符是否能执行 IO操作 传统网络IO - 阻塞 IO (BIO) 阻塞IO就是当我们执行一次IO操作中,整个程序是阻塞的,意味在途中我们必须等待返回才…

你了解C语言中的数组指针和函数指针吗?

如题,本篇文章重点讲解C语言中的数组指针和函数指针。这2种指针其实都不是很常用,个人感觉使用起来代码的可读性不是很高,但是还是需要了解一下。 数组指针 数组指针,即指向数组的指针,是用来存放数组的地址的。那如…