目录
1.模式识别是什么?
2.模式识别具体是怎么定义的,主要研究方向是什么?
3.模式识别应用于哪些领域,模式识别技术的发展趋势
1.模式识别是什么?
作为人工智能的一个重要方向,模式识别的主要任务是模拟人的感知能力,如通过视觉和听觉信息去识别理解环境,又被称为“机器感知”或“智能感知”。
人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定目的把相似、但又细节不同的事物或现象组成一类。字符识别就是一个典型的例子,如数字“4”可以有各种写法,但都属于同一类别。人脑具有很强的模式识别和推广能力,即使对于某种不同写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。人脑的这种对模式(事物、现象等)进行归类和分类的能力,就是模式识别,也就是感知能力。
随着20世纪40年代电子计算机出现,50年代人工智能兴起,模式识别在20世纪60年代初迅速发展成为一门新学科。21世纪以来,模式识别又逐渐与深度学习融合。近年来,深度学习和大数据的出现推动了模式识别的快速发展。
对此,刘成林解释道,“模式识别是一个智能任务,是人工智能的一种形式。机器学习,包括深度学习是模式识别背后的基本方法,通过学习(训练)使机器具备识别模式的能力。当前,用深度学习的方法来实现模式识别,能更好的解决问题。”
深度学习作为机器学习的一种,是对生物神经网络结构和信息处理机制的简单模拟。近年来,随着计算能力的提升,可以训练层数较多的神经网络(称为深度神经网络)来提升数据拟合和识别能力,有的甚至达到了1000多层。深度学习一般就是指利用深度神经网络来进行学习。
但刘成林认为,目前人脸识别、文字识别虽然已应用得较为广泛,但还不能算“应用得很好”。人脸识别目前应用得比较成熟的是门禁、通关等领域,原因在于被识别的对象能主动配合,距离摄像头较近,能拍摄到比较清楚的图像。很多厂商在用户配合、光照可控的场景下人脸识别正确率能达到99%以上。但在更加复杂的情况下,如在室外光照不均、距离远、人脸视角多变情况下,用监控摄像头进行人脸识别,识别正确率就会明显降低。
目前在计算机前端加入AI模块,只能起辅助作用,复杂条件下的人脸识别依旧难以达到成熟应用的程度【论文点】。刘成林表示,室外自然光照条件下,“人脸识别正确率还达不到50%”。
文字识别领域也是如此。文字识别目前主要应用在书籍和报纸等的数字化上。报纸、金融机构、保险机构以及快递行业的的大量单据,都需要电子化后才能方便检索、管理和进行大数据分析。司法界推行智能法务,办案的文书(有印刷体,也有手写体)需要电子化。医院的病例、教育领域的作业题、考试答卷等,也都有很大的电子化需求。
同人脸识别一样,图像清晰度和光照等问题也是文字识别的一大难点。平板扫描仪由于光照均匀,对纸质材料扫描得到的图像清晰度高,文字识别率较高。而拍照图片的识别率则会降低,室外自然场景图片中的文字检测和识别更是当今研究的热点和难点问题【论文点】。
如何克服?
要克服人脸识别中低分辨率和光照的问题,深度学习也存在局限,而运用对抗学习的方法来处理图像则能提高其清晰度或生成更多样本。
2.模式识别具体是怎么定义的,主要研究方向是什么?
模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。
模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,
1.学习阶段是对样本进行特征选择,寻找分类的规律,
2.实现阶段是根据分类规律对未知样本集进行分类和识别。
例如:广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分 析、化学模式识别等等。
模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下几种方法进行分析处理。
1.统计模式识别方法【最经典,常用】:基本原理是:有相似性的样本在模式空间中互相接近,并形成“集团”,即“物以类聚”。它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。
2.人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。
3.句法结构模式识别:句法结构模式识别着眼于对待识别对象的结构特征的描述。
3.模式识别应用于哪些领域,模式识别技术的发展趋势
模式识别可用于文字和语音识别、遥感和医学诊断等方面。