【数据结构与算法】 - 双向链表 - 详细实现思路及代码

news/2024/12/2 20:54:35/

目录
一、概述
二、双向链表
三、双向链表实现步骤
 📌3.1 C语言定义双向链表结点
 📌3.2 双向链表初始化
 📌3.3 双向链表插入数据
 📌3.4 双向链表删除数据
 📌3.5 双向链表查找数据
 📌3.6 双向链表的销毁
四、双向链表链表完整代码


在这里插入图片描述

一、概述

前几篇文章介绍了怎样去实现单链表、单循环链表,这篇文章主要介绍双向链表以及实现双向链表的步骤,最后提供我自己根据理解实现双向链表的C语言代码。跟着后面实现思路看下去,应该可以看懂代码,看懂代码后,就对双向链表有了比较抽象的理解了,最后自己再动手写一个双向链表,就基本理解这个东西了。
在这里插入图片描述

在这里插入图片描述

二、双向链表

双向链表:在单链表的每个结点中,再设置一个指向其前驱结点的指针域。
下图是 单链表
在这里插入图片描述

下图是 双向链表
在这里插入图片描述

双向链表的特点:

  1. 双向链表可以反向访问到链表的结点,因为它有指向前一个结点的指针prior
  2. 带有头结点的双向链表,为空链表时,头结点的两个指针域都指向NULL
    在这里插入图片描述
  3. 带有头结点的双向链表,为非空链表时,
    头结点的前驱指针域指向NULL,后驱指针域指向第一个结点;
    最后一个结点的前驱指针域指向前一个结点,后驱指针域指向NULL
    其他结点的前驱指针域指向前一个结点,后驱指针域指向后一个结点;
    在这里插入图片描述

在这里插入图片描述

三、双向链表实现步骤

从上面知道了双向链表的相关概念和一些特点,接下来开始实现双向链表,这里使用带有头结点的双向链表进行讲解,从初始化双向链表、插入数据、删除数据、查找数据、销毁双向链表5个操作进行说明,需要注意的是,双向链表的插入、删除操作需要改变两个指针域;其他操作基本和单链表一致。

📌3.1 C语言定义双向链表结点

为了和前几篇文章的链表做比较,双向链表结构体也尽量定义相似的。

typedef int ElemType;
typedef struct _DoubleListNode
{ElemType data;struct _DoubleListNode *prior;	// 前驱指针struct _DoubleListNode *next;	// 后驱指针
}DoubleListNode;
typedef DoubleListNode* DoubleLinkList;

📌3.2 双向链表初始化

因为带有头结点,初始化时就需要分配一个头结点的内存空间,且头指针会一直指向头结点。
双向链表初始化算法思路如下:

1、分配一个结点的存储空间作为头结点,并将头指针指向头结点;
2、让头结点的 prior指针 和 next指针 都指向NULL,头结点的数据填一个无效值;
3、将头指针返回给函数调用者。

C语言实现代码如下:

DoubleLinkList ListInit()
{DoubleLinkList list = (DoubleLinkList)malloc(sizeof(DoubleListNode));list->prior = NULL;list->next = NULL;list->data = -1;return list;
}

在这里插入图片描述

📌3.3 双向链表插入数据

双向链表插入数据大致分为两个步骤:首先,找到插入位置n的前一个结点;其次,是插入新结点,可以:先连接新结点、再指向新结点的顺序。
先连接新结点:是先把新结点的两个指针域分别连接当前结点和下个结点,new->prior = cur;new->next = cur->next;
再指向新结点:将当前节点的的指针域指向新节点,与旧节点断开,cur->next->prior = new;cur->next = new;
在这里插入图片描述

双向链表在第n个位置插入数据的算法思路:

1、定义一个结点指针cur指向头结点,用来遍历链表;
2、定义一个变量cur_i,用来表示当前结点的序号,初始化为0表示当前指向头结点;
3、将cur指针不断往后移动,直到下个位置就是插入位置n,即当cur_i==(n-1)跳出循环;
4、若结束循环后是当前结点无效,说明链表长度不够;
5、否则,说明当前结点cur的下个位置就是插入位置n,分配存储空间给新结点new;
6、把值填进新节点的数据域,用新结点prior指向当前结点,next指向当前节点的下个节点;
7、再将下个结点的prior指向新结点,当前结点的next指向新结点,完成插入操作。

C语言实现代码如下:

int ListInsert(DoubleLinkList list, int data, int n)// 将node插入到第n位,n从1开始
{if(list==NULL || n<1) // 判断参数有效性return -1;DoubleListNode* cur = list;	// cur指向当前结点,初始化指向头结点int cur_i=0;			// cur_i表示当前结点的序号,0-头结点while(cur && cur_i<(n-1))// 当前结点有效,且不是插入位置的前一个结点,就后移一个{cur = cur->next;cur_i++;}if(!cur)			// 当前结点无效,说明已经移动到最后{printf("[%s %d]error din't have No.%d\n", __FUNCTION__,__LINE__, n);return -1;	// 链表没有 n 那么长}DoubleListNode* new = (DoubleListNode*)malloc(sizeof(DoubleListNode));new->data = data;new->prior = cur;new->next = cur->next;if(cur->next)		// 在最后一个结点插入时,cur->next==NULLcur->next->prior = new;cur->next = new;return 0;
}

📌3.4 双向链表删除数据

双向链表删除结点也是需要改变两个指针域,大致步骤如下,首先,找到删除位置n的前一个结点;其次,“把前一个结点的next指针域指向删除结点del的下个结点”,“再把下个结点的prior指针域指向删除结点del的前个结点”,这样就删除了下一个结点。
在这里插入图片描述

双向链表删除第n个数据的算法思路:

1、定义一个结点指针cur指向头结点,用来遍历链表;
2、定义一个变量cur_i,用来表示下个结点的序号,初始化为0表示当前指向头结点;
3、将cur指针不断往后移动,直到下个位置就是删除位置n,即当cur_i==(n-1)跳出循环;
4、若结束循环后是最后一个结点(cur->next==NULL),说明链表长度不够;
5、否则,说明下个结点(cur->next)就是删除位置n的结点delete,赋值delete = cur->next;
6、将前一个结点的next指针域指向 del 的下个结点 ,delete->prior->next = delete->next;
7、将下一个结点的prior指针域指向 del 的前个结点 ,delete->next->prior = delete->prior;;
8、最后释放delete结点的内存,完成删除操作。

C语言实现代码如下,删除结点更关注的是下个结点(cur->next)的有效性:

// 删除第n个结点,且将删除的值通过data传出
int ListDelete(DoubleLinkList list, int *data, int n)
{if(list==NULL || data==NULL || n<1)return -1;DoubleListNode* cur = list;	// cur指向当前结点,初始化指向头结点int cur_i=0;				// cur_i表示当前结点的序号,0-头结点while(cur->next && cur_i<(n-1)){// 下个结点有效,且当前位置不是删除位置的前一个,就后移一个cur = cur->next;cur_i++;}if(!cur->next)		// 下个结点无效,说明已经移动到最后{printf("[%s %d]error din't have No.%d\n", __FUNCTION__,__LINE__, n);return -1;		// 链表没有 n 那么长}DoubleListNode *delete = cur->next;delete->prior->next = delete->next;delete->next->prior = delete->prior;free(delete);return 0;
}

📌3.5 双向链表查找数据

查找数据时,将指针指向第一个结点而非头结点,下面函数中list是头指针,指向头结点,双向链表非空时,list->next就是第一个结点;双向链表为空时,list->next == NULL。双向链表 和 单链表 查找数据的算法是一样的。

双向链表查找第n个数据的算法思路:

1、定义一个结点指针cur指向第一个结点(list->next),用来遍历链表;
2、定义一个变量cur_i,用来表示当前结点的序号,初始化为1(第一步指向的就是第一个结点);
3、若当前结点有效,且当前位置不是查找位置n,就继续后移,直到最后结点或cur_i==n跳出循环;
4、若结束循环后,当前结点无效,说明已经移动到最后,链表长度不够;
5、否则,说明当前结点(cur)就是查找位置n的结点;返回结点数据*data = cur->data。

C语言实现代码如下:

int ListFind(DoubleLinkList list, int *data, int n)
{if(list==NULL || data==NULL || n<1)return -1;DoubleListNode* cur = list->next;// 指向第一个节点int cur_i=1;			// i表示当前结点的序号while(cur && cur_i<n)	// 当前结点有效,且当前位置不是查找位置n,就往后移动一个{cur = cur->next;cur_i++;}if(!cur)			// 当前结点无效,说明已经移动到最后{printf("[%s %d]error din't have No.%d\n", __FUNCTION__,__LINE__, n);return -1;	// 链表没有 n 那么长}*data = cur->data;printf("[%s %d]find No.%d = %d\n", __FUNCTION__,__LINE__, n,*data);return 0;
}

📌3.6 双向链表的销毁

双向链表销毁的算法思路:

1、定义一个结点指针cur指向第一个结点,用来遍历链表;
2、定义一个结点指针next,保存下个结点地址;
3、当前指针不是指向最后一个结点的指针域就后移,进入循环:3.1、先保存下个结点地址,因为下个结点本来保存在cur->next,直接free(cur)会丢掉下个结点;3.2、删除当前结点,释放内存3.3、将当前指针指向前面保存好的下个结点。
4、结束循环后,已经删除完所有节点,此时需要将头结点的两个指针域都指向NULL,表示空链表。

C语言实现代码如下:

void ListDestroy(DoubleLinkList list)
{DoubleListNode* cur = list->next;	// 指向第一个节点DoubleListNode* next = NULL;		// 用于保存下个结点地址while(cur)	// 当前结点有效,就往后移动{next = cur->next;		// 保存下个结点地址//printf("[%s %d]delete %d\n", __FUNCTION__,__LINE__, cur->data);free(cur);				// 删除当前结点、并释放内存cur = next;				// 将当前结点指针指向下个结点}list->prior = NULL;list->next = NULL;
}

在这里插入图片描述

四、双向链表完整代码

代码只是为了更好地了解循环链表,实现过程可能存在不足,有发现的,欢迎指正,谢谢!!!
代码已在Ubuntu编译通过,可执行。

// DoubleList.c
#include <stdio.h>
#include <stdlib.h>typedef int ElemType;
typedef struct _DoubleListNode
{ElemType data;struct _DoubleListNode *prior;	// 前驱指针struct _DoubleListNode *next;	// 后驱指针
}DoubleListNode;
typedef DoubleListNode* DoubleLinkList;DoubleLinkList ListInit()
{DoubleLinkList list = (DoubleLinkList)malloc(sizeof(DoubleListNode));list->prior = NULL;list->next = NULL;list->data = -1;return list;
}int ListInsert(DoubleLinkList list, int data, int n)// 将node插入到第n位,n从1开始
{if(list==NULL || n<1) // 判断参数有效性return -1;DoubleListNode* cur = list;	// cur指向当前结点,初始化指向头结点int cur_i=0;				// cur_i表示当前结点的序号,0-头结点while(cur && cur_i<(n-1))// 当前结点有效,且不是插入位置的前一个结点,就后移一个{cur = cur->next;cur_i++;}if(!cur)			// 当前结点无效,说明已经移动到最后{printf("[%s %d]error din't have No.%d\n", __FUNCTION__,__LINE__, n);return -1;	// 链表没有 n 那么长}DoubleListNode* new = (DoubleListNode*)malloc(sizeof(DoubleListNode));new->data = data;new->prior = cur;new->next = cur->next;if(cur->next)		// 在最后一个结点插入时,cur->next==NULLcur->next->prior = new;cur->next = new;return 0;
}// 删除第n个结点,且将删除的值通过data传出
int ListDelete(DoubleLinkList list, int *data, int n)
{if(list==NULL || data==NULL || n<1)return -1;DoubleListNode* cur = list;	// cur指向当前结点,初始化指向头结点int cur_i=0;				// cur_i表示当前结点的序号,0-头结点while(cur->next && cur_i<(n-1)){// 下个结点有效,且当前位置不是删除位置的前一个,就后移一个cur = cur->next;cur_i++;}if(!cur->next)		// 下个结点无效,说明已经移动到最后{printf("[%s %d]error din't have No.%d\n", __FUNCTION__,__LINE__, n);return -1;		// 链表没有 n 那么长}DoubleListNode *delete = cur->next;delete->prior->next = delete->next;delete->next->prior = delete->prior;free(delete);return 0;
}int ListFind(DoubleLinkList list, int *data, int n)
{if(list==NULL || data==NULL || n<1)return -1;DoubleListNode* cur = list->next;// 指向第一个节点int cur_i=1;			// i表示当前结点的序号while(cur && cur_i<n)	// 当前结点有效,且当前位置不是查找位置n,就往后移动一个{cur = cur->next;cur_i++;}if(!cur)			// 当前结点无效,说明已经移动到最后{printf("[%s %d]error din't have No.%d\n", __FUNCTION__,__LINE__, n);return -1;	// 链表没有 n 那么长}*data = cur->data;printf("[%s %d]find No.%d = %d\n", __FUNCTION__,__LINE__, n,*data);return 0;
}void ListDestroy(DoubleLinkList list)
{DoubleListNode* cur = list->next;	// 指向第一个节点DoubleListNode* next = NULL;		// 用于保存下个结点地址while(cur)	// 当前结点有效,就往后移动{next = cur->next;		// 保存下个结点地址//printf("[%s %d]delete %d\n", __FUNCTION__,__LINE__, cur->data);free(cur);				// 删除当前结点、并释放内存cur = next;				// 将当前结点指针指向下个结点}list->prior = NULL;list->next = NULL;
}void ListPrintf(DoubleLinkList list)
{DoubleListNode* cur = list->next;// 指向第一个节点printf("list:[");while(cur){printf("%d,",cur->data);cur = cur->next;}printf("]\n");
}int main()
{DoubleLinkList list=ListInit();int data=0;printf("Linklist is empty !!! \n");ListInsert(list, 2, 2);		// 空链表时,验证插入ListDelete(list, &data, 1);	// 空链表时,验证删除ListFind(list, &data, 1);	// 空链表时,验证查询ListDestroy(list);			// 空链表时,验证销毁printf("\ninsert 3 data\n");// 正常插入3个数据ListInsert(list, 1, 1);ListInsert(list, 2, 2);ListInsert(list, 3, 3);ListPrintf(list);printf("\n验证错误值\n");ListInsert(list, 5, 5);		// 验证插入ListDelete(list, &data, 4);	// 验证删除ListFind(list, &data, 4);	// 验证查询printf("\n正常操作\n");// 正常操作ListFind(list, &data, 2);printf("delete 2,now\n");ListDelete(list, &data, 2);ListPrintf(list);printf("Insert 4 to 2,now\n");ListInsert(list, 4, 2);ListPrintf(list);printf("Destroy ,now\n");ListDestroy(list);ListPrintf(list);return 0;
}

http://www.ppmy.cn/news/44903.html

相关文章

Arcgis小技巧【12】——ArcGIS标注的各种用法和示例

标注是将描述性文本放置在地图中的要素上或要素旁的过程。 本文整理了ArcGIS中的各种标注方法、可能遇到的问题和细节&#xff0c;内容比较杂&#xff0c;想到哪写到哪。 一、正常标注某一字段值的内容 右键点击【属性】&#xff0c;在【标注】选项卡下勾选【标注此图层中的的…

贯穿设计模式第八话--设计原则总结篇

&#x1f973;&#x1f973;&#x1f973; 茫茫人海千千万万&#xff0c;感谢这一刻你看到了我的文章&#xff0c;感谢观赏&#xff0c;大家好呀&#xff0c;我是最爱吃鱼罐头&#xff0c;大家可以叫鱼罐头呦~&#x1f973;&#x1f973;&#x1f973; 从今天开始&#xff0c;将…

基于Amazon S3的通用封装oss-spring-boot-starter,支持前端分片直传

前段时间使用minio-java封装了一个 minio-spring-boot-starter&#xff0c;但是有局限性&#xff0c;不能很好的支持各个云服务厂商的OSS服务&#xff0c;为此&#xff0c;利用 aws-java-sdk-s3 做一个统一的封装&#xff0c;兼容S3 协议的通用文件存储工具类 &#xff0c;支持…

23北京邮电大学备考经验

目录【写在前面】本科成绩择校历程英语复习数学复习政治复习专业课复习其它建议笔记复盘压力处理恋爱关系【写在最后】【写在前面】 初试成绩&#xff1a; 本科成绩 总体&#xff1a;浙江某双非学校的软件工程专业、综合测评成绩班级前两名、浙江省省级优秀毕业生、发表过论…

每块硬盘最多可以有几个扩展分区?各个扩展分区最多可以有多少个逻辑驱动器?请高手告知,谢谢!

不同系统&#xff0c;不同分区方案&#xff0c;数量也有不同的。 Linux: 主分区最多4个 逻辑分区: SCSI 最多 16 个 IDE 最多 63 个 传统的分区方案(称为MBR分区方案)是将分区信息保存到磁盘的第一个扇区(MBR扇区)中的64个字节中&#xff0c;每个分区项占用16个字节&#xff0c…

C# 中的泛型

C# 中的泛型 泛型(Generic)是C# 2.0和通用语言运行时(CLR)的一个新特性&#xff0c;泛型为 .Net 框架引入了类型参数(type parameters)的概念。类型参数使得设计类和方法时不必确定一个或多个参数&#xff0c;具体参数可以等到调用时候的代码声明和实现确定。这意味着使用泛型…

React | React的JSX语法

✨ 个人主页&#xff1a;CoderHing &#x1f5a5;️ Node.js专栏&#xff1a;Node.js 初级知识 &#x1f64b;‍♂️ 个人简介&#xff1a;一个不甘平庸的平凡人&#x1f36c; &#x1f4ab; 系列专栏&#xff1a;吊打面试官系列 16天学会Vue 11天学会React Node专栏 &#…

多个渠道成功销售的秘诀速递

将您的电子商务业务扩展到多个渠道销售似乎是一项艰巨的任务吗&#xff1f;但如果有了正确的多渠道增长战略&#xff0c;这可能是实现快速增长的好方法。当然&#xff0c;您需要考虑借助一些工具与策略&#xff0c;而SaleSmartly&#xff08;ss客服&#xff09;可以为您提供。 …