机器学习:基于AdaBoost算法对信用卡精准营销建立模型(附案例实战)

news/2024/11/26 6:03:10/

在这里插入图片描述

机器学习:基于AdaBoosts算法对信用卡精准营销建立模型

作者:i阿极

作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪


订阅专栏案例:机器学习
机器学习:基于逻辑回归对某银行客户违约预测分析
机器学习:学习k-近邻(KNN)模型建立、使用和评价
机器学习:基于支持向量机(SVM)进行人脸识别预测
决策树算法分析天气、周末和促销活动对销量的影响
机器学习:线性回归分析女性身高与体重之间的关系
机器学习:基于主成分分析(PCA)对数据降维
机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测
机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价
机器学习:基于神经网络对用户评论情感分析预测
机器学习:朴素贝叶斯模型算法原理(含实战案例)
机器学习:逻辑回归模型算法原理(附案例实战)
机器学习:基于逻辑回归对优惠券使用情况预测分析
机器学习:基于逻辑回归对超市销售活动预测分析
机器学习:基于KNN对葡萄酒质量进行分类

文章目录

  • 机器学习:基于AdaBoosts算法对信用卡精准营销建立模型
  • 1、AdaBoost算法简介
  • 2、实验环境
  • 3、实验内容
  • 4、案例实战
    • 4.1案例背景
    • 4.2模型搭建
    • 4.3模型预测及评估


1、AdaBoost算法简介

AdaBoost算法 (Adaptive Boosting) 是一种有效而实用的Boosting算法,它以一种高度自适应的方法顺序地训练弱学习器。AdaBoost根据前一次的分类效果调整数据的权重,上一个弱学习器中错误分类样本的权重会在下一个弱学习器中增加,正确分类样本的权重会相应减少,并且在每一轮迭代时会向模型加入一个新的弱学习器。不断重复调整权重和训练弱学习器的过程,直到误分类数低于预设值或迭代次数达到指定最大迭代次数时,我们会得到一个强分类器。

绘制了如下一张图来解释调整权重的概念,在步骤一中先切一刀对数就进行划分,此时将小三角形错误的划分到了圆形类别中,在步骤二便调整这一分类错误的小三角形的权重,使它变成一个大三角形,这样它和三角形类型的数据就更加接近了,因此重新分类时,它便能准确的分类到三角形类别。
在这里插入图片描述

预先设定AdaBoost算法在误分类数为0时终止迭代,即全部分类正确时(即误差率为0)停止迭代,并定义误差率为错误划分类别的样本权重之和,例如对于9个样本,每个样本的权重为1/9,若此时有2个样本划分错误,那么此时的误差率就是1/9 + 1/9=2/9。

AdaBoost分类算法的流程图如下所示:
在这里插入图片描述

2、实验环境

Python 3.9

Anaconda

Jupyter Notebook

3、实验内容

AdaBoots信用卡精准营销模型

4、案例实战

4.1案例背景

当前经济增速下行,风控压力加大,各家商业银行纷纷投入更多资源拓展信用卡业务,信用卡产业飞速发展。因为市场竞争激烈,信用卡产品同质化严重,商业银行需要采用更快捷有效的方式扩大客户规模,实现精准营销,从而降低成本提高效益,增强自身竞争力。该精准营销模型也可以应用其他领域的精准营销,例如信托公司信托产品的精准营销等。

4.2模型搭建

1、读取数据

import pandas as pd
df = pd.read_excel('信用卡精准营销模型.xlsx')
df.head()

在这里插入图片描述

2、提取特征变量和目标变量

X = df.drop(columns='响应') 
y = df['响应']

3、划分训练集与测试集

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)

4、模型训练及搭建

from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(random_state=123)
clf.fit(X_train, y_train)

在这里插入图片描述

4.3模型预测及评估

1、预测测试集数据

y_pred = clf.predict(X_test)
print(y_pred)

在这里插入图片描述

2、预测值与实际值对比

a = pd.DataFrame()  # 创建一个空DataFrame 
a['预测值'] = list(y_pred)
a['实际值'] = list(y_test)
a.head()

在这里插入图片描述

3、查看准确度

from sklearn.metrics import accuracy_score
score = accuracy_score(y_pred, y_test)
print(score)

在这里插入图片描述

4、查看预测分类概率

y_pred_proba = clf.predict_proba(X_test)
y_pred_proba[0:5]  

在这里插入图片描述

5、绘制ROC曲线

from sklearn.metrics import roc_curve
fpr, tpr, thres = roc_curve(y_test.values, y_pred_proba[:,1])
import matplotlib.pyplot as plt
plt.plot(fpr, tpr)
plt.show()

在这里插入图片描述

6、查看AUC值

from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_proba[:,1])
print(score)

在这里插入图片描述

7、查看特征重要性

clf.feature_importances_

在这里插入图片描述

# 通过DataFrame的方式展示特征重要性
features = X.columns  # 获取特征名称
importances = clf.feature_importances_  # 获取特征重要性# 通过二维表格形式显示
importances_df = pd.DataFrame()
importances_df['特征名称'] = features
importances_df['特征重要性'] = importances
importances_df.sort_values('特征重要性', ascending=False)

在这里插入图片描述


📢文章下方有交流学习区!一起学习进步!💪💪💪
📢创作不易,如果觉得文章不错,可以点赞👍收藏📁评论📒
📢你的支持和鼓励是我创作的动力❗❗❗


http://www.ppmy.cn/news/43096.html

相关文章

AXI write data在Write data channel的排布

前几天帮一位同事分析了下write data在AXI write data channel上排布,想想还是记录一下,方便日后复习。我们先来看一张wdata排布图,灰色单元表示该Byte没有被传输。 第一次看这张图的时候,是否有感觉疑惑: address为0…

计算机组成原理---第四章 指令系统

一、指令系统的发展与性能要求 指令系统的概述 指令就是要计算机执行某种操作的命令。可分为:①微指令,属于硬件;②机器指令,简称指令,完成算术逻辑操作;③宏指令,由若干条机器指令组成&#xf…

【每日一题Day173】LC1019链表中的下一个更大节点 |单调栈

链表中的下一个更大节点【LC1019】 给定一个长度为 n 的链表 head 对于列表中的每个节点,查找下一个 更大节点 的值。也就是说,对于每个节点,找到它旁边的第一个节点的值,这个节点的值 严格大于 它的值。 返回一个整数数组 answer…

【Java Web】015 -- Maven高级(分模块设计与开发、继承与聚合、私服)

目录 一、分模块设计与开发 1、为什么要分模块设计? 2、实践:分模块开发 ①、实现步骤 3、小结 二、继承与聚合 继承 1、继承关系 ①、为什么要在Maven工程中实现继承? ②、继承关系实现 ③、继承实现小结 ④、maven项目父子工程结构说明 2、…

TensorFlow 2.0 快速入门指南:第一部分

原文:TensorFlow 2.0 Quick Start Guide 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何实现…

工资六千的岗位面试了6轮

看到有网友说工资六千的岗位面试了6轮,不禁感慨,这公司的面试流程有多复杂。一个工资六千的岗位需要面试6轮,同时不得不佩服这位求职者毅力和耐心,要是我,估计3次我就觉得多了,工资六千面试需要6次还能够坚…

数据库设计案例

一个专辑可以包含多个曲目,一个曲目只能属于一个专辑 一对多 一个专辑可以包含多条短评,一条短语只能属于一个专辑 一对多 一个用户可以包含多条短评,一个短评只能属于一个用户 一对多 一个专辑可以属于多个用户,一个用户…

〖Python网络爬虫实战⑮〗- pyquery的使用

订阅:新手可以订阅我的其他专栏。免费阶段订阅量1000python项目实战 Python编程基础教程系列(零基础小白搬砖逆袭) 说明:本专栏持续更新中,目前专栏免费订阅,在转为付费专栏前订阅本专栏的,可以免费订阅付费…