【数据结构第八章】- 排序(万字详解排序算法并用 C 语言实现)

news/2024/11/29 13:44:18/

目录

一、基本概念和排序方法概述

1.1 - 排序的基本概念

1.2 - 内部排序的分类

二、插入排序

2.1 - 直接插入排序

2.2 - 希尔排序

三、交换排序

3.1 - 冒泡排序

3.2 - 快速排序

3.2.1 - 递归算法

3.2.2 - 优化

3.2.3 - 非递归算法

四、选择排序

4.1 - 简单选择排序

4.2 - 堆排序

五、归并排序

5.1 - 递归

5.2 - 迭代

六、排序算法复杂度及稳定性分析



一、基本概念和排序方法概述

1.1 - 排序的基本概念

  1. 排序(Sorting)是按照关键字(例如:销量、价格等)的非递减非递增顺序对一组记录重新进行排列的操作。

  2. 关键字相等的两个或两个以上的记录,若在排序后的序列中,它们的前后位置不发生改变,则称所用的排序方法是稳定的;反之,则称所用的排序方法是不稳定的

  3. 根据在排序过程中记录所占用的存储设备,可将排序方法分为两大类:一类是内部排序,指的是待排序记录全部存放在计算机内存中进行排序的过程;另一类是外部排序,指的是待排序记录的数量很大,以致内存一次不能容纳全部记录,在排序过程中尚需对外存进行访问的排序过程。

1.2 - 内部排序的分类


二、插入排序

插入排序的基本思想是:每一趟将一个待排序的记录,按其关键字的大小插入到已经排好序的一组记录的适当位置上,直到所有待排序记录全部插入为止。

例如,打扑克牌在抓牌时要保证抓过的牌有序排列,则每抓一张牌,就插入到合适的位置,直到抓完牌为止,即可得到一个有序序列。

 

2.1 - 直接插入排序

直接插入排序(Straight Insertion Sort)的基本操作是将一条记录插入到已排好序的有序表中,从而得到一个新的、记录数量增 1 的有序表。

算法步骤

  1. 设待排序的记录存放在数组 arr[0...n-1] 中, arr[0] 是一个有序序列。

  2. 循环 n - 1 次,每次使用顺序查找法,查找 arr[i]i = 1, ..., n - 1)在已排好序的序列 arr[0...i-1] 中的插入位置,然后将 arr[i] 插入。

    具体操作则是将 arr[i]arr[i - 1]arr[i - 2],...,arr[0] 从后向前顺序比较,并在自 arr[i - 1] 起往前查找插入位置的过程中,同时后移记录。

void InsertSort(int* arr, int n)
{for (int i = 1; i < n; ++i){// 一趟直接排序:将 arr[i] 插入到已排好序的序列 arr[0...i-1] 中int tmp = arr[i];int end = i - 1;while (end >= 0)  // 从后向前寻找插入位置{if (tmp < arr[end])  // 后移{arr[end + 1] = arr[end];--end;}else{break;}}arr[end + 1] = tmp;}
}

注意:需要提前将 arr[i] 保存到临时变量 tmp 中,因为如果 arr[i - 1] < arr[i],在后移的过程中会覆盖 arr[i]

2.2 - 希尔排序

希尔排序(Shell's Sort)又称 "缩小增量排序"(Diminishing Increment Sort),是插入排序的一种,因为 D.L.Shell 于 1959 年提出而得名。

直接插入排序,当待排序的记录个数较少且待排序序列的关键字基本有序时,效率较高。希尔排序基于以上两点,从 "减少记录个数""序列基本有序" 这两个方面对直接插入排序进行了改进。

希尔排序实质上是采用分组插入的方法。先将整个待排序记录分割成几组,从而减少参与直接插入排序的数据量,对每组分别进行直接插入排序,然后增加每组的数据量,重新分组。这样经过几次分组排序后,整个序列中的记录 "基本有序" 时,再对全体记录进行一次直接插入排序。

算法步骤

  1. 第一趟取增量 gap_1(gap_1 < n) 把全部记录分成 组,所有间隔为 gap_1 的记录分在同一组,在各个组中进行直接插入排序。

  2. 第二趟取增量 gap_2(gap_2 < gap_1),重复上述的分组和排序。

  3. 依次类推,直到所取得增量 gap_t = 1(gap_t < gap_{t-1} < ... < gap_2 < gap_1),所有记录在同一组中进行直接插入排序为止。

    gap 的取法有多种。最初 Shell 提出取 gap = ⌊n / 2⌋,gap = ⌊gap / 2⌋,直到 gap = 1,后来 Knuth 提出取 gap = ⌊gap / 3⌋ + 1。还有人提出都取奇数为好,也有人提出各 gap 互质为好。无论哪一种主张都没有得到证明。

例如

void ShellSort(int* arr, int n)
{int gap = n;while (gap > 1){gap /= 2;  // 缩小增量for (int i = 0; i < gap; ++i)  // 将整个数组分为 gap 组{for (int j = gap + i; j < n; j += gap)  // 对每组分别进行直接插入排序{int tmp = arr[j];int end = j - gap;while (end >= 0){if (tmp < arr[end]){arr[end + gap] = arr[end];end -= gap;}else{break;}}arr[end + gap] = tmp;}}}
}

写法二

void ShellSort(int* arr, int n)
{int gap = n;while (gap > 1){gap /= 2;for (int i = gap; i < n; ++i)  // 对所有组同时进行直接插入排序{int tmp = arr[i];int end = i - gap;while (end >= 0){if (tmp < arr[end]){arr[end + gap] = arr[end];end -= gap;}else{break;}}arr[end + gap] = tmp;}}
}


三、交换排序

交换排序的基本思想是:两两比较待排序记录的关键字,一旦发现两个记录不满足次序要求时则进行交换,直到整个序列全部满足要求为止。

3.1 - 冒泡排序

冒泡排序(Bubble Sort)是一种最简单的交换排序方法,它通过两两比较相邻记录的关键字,如果发生逆序,则进行交换,从而使关键字小的记录如气泡一般逐渐往上 "漂浮"(左移),或者使关键字大的记录如石块一样逐渐向下 "坠落"(右移)。

算法步骤

  1. 设待排序的记录存放在数组 arr[0...n-1] 中。首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序(即 arr[0] > arr[1]),则交换两个记录。然后比较第二个记录和第三个记录的关键字。依次类推,直至 arr[n - 2]arr[n - 1] 进行比较过为止。上述过程称作第一趟起泡排序,其结果使得关键字最大的记录被安置到最后一个记录的位置上。

  2. 然后进行第二趟起泡排序,对前 n - 1 个记录进行同样的操作,其结果是使关键字次大的记录被安置到第 n - 1 个记录的位置上。

  3. 重复上述比较和交换的过程,直到某一趟排序过程中没有进行过交换记录的操作,说明序列已全部达到排序要求,则完全排序。

void Swap(int* e1, int* e2)
{int tmp = *e1;*e1 = *e2;*e2 = tmp;
}
​
void BubbleSort(int* arr, int n)
{for (int i = 0; i < n - 1; ++i){int flag = 0;  // flag 用来标记某一趟排序是否发生交换for (int j = 0; j < n - 1 - i; ++j){if (arr[j] > arr[j + 1]){Swap(&arr[j], &arr[j + 1]);flag = 1;}}if (flag == 0){break;}}
}

3.2 - 快速排序

快速排序(Quick Sort)是对冒泡排序的一种改进,由 C.A.R.Hoare(霍尔)于 1962 年提出。在冒泡排序过程中,只对相邻的两个记录进行比较,因此每次交换两个相邻的记录时只能消除一个逆序。如果能通过两个(不相邻)记录的一次交换,消除多个逆序,则会大大加快排序的速度。快速排序方法中的一次交换可能消除多个逆序。

快速排序的基本思想是:在待排序的 n 个记录中任取一个记录作为枢轴(或支点),设其关键字为 pivotkey。经过一趟快速排序后,把所有关键字小于 pivotkey 的记录交换到前面,把所有关键字大于 pivotkey 的记录交换到后面,结果将待排序记录分成两个子表,最后将枢轴放置在分界处的位置。然后,分别对左、右子表重复上述过程,直至每一子表只有一个记录时,排序完成。

3.2.1 - 递归算法

Hoare 版本

int Partion(int* arr, int left, int right)
{int pivotloc = left;  // 取第一个元素作为枢轴int pivotkey = arr[pivotloc]; while (left < right){// 从右往左搜索,找到第一个小于 pivotkey 的元素while (left < right && arr[right] >= pivotkey){--right;}// 从左往右搜索,找到第一个大于 pivotkey 的元素while (left < right && arr[left] <= pivotkey){++left;}// 交换Swap(&arr[left], &arr[right]);}// left 和 right 相遇,即 left == rightSwap(&arr[pivotloc], &arr[left]);pivotloc = left;return pivotloc;
}
​
void QSort(int* arr, int left, int right)
{if (left < right)  // 长度大于 1{// 将 arr[left...right] 一分为二,pivotloc 是枢轴位置int pivotloc = Partion(arr, left, right);  // 对左子表递归排序QSort(arr, left, pivotloc - 1);// 对右子表递归排序QSort(arr, pivotloc + 1, right);}
}
​
void QuickSort(int* arr, int n)
{QSort(arr, 0, n - 1);
}

当 left == right,可以分以下两种情况讨论:

  1. 从左往右搜索时,left 遇到了 right,此时 arr[left] == arr[right] < pivotkey。

  2. 从右往左搜索时,right 遇到了 left,若 left 已经移动过了,那么经过交换 Swap(&arr[left], &arr[right]),arr[left] < pivotkey;若 left 没有移动过,则 arr[left] == pivotkey。

挖坑法

int Partion(int* arr, int left, int right)
{int pivotloc = left;  // 取第一个元素作为枢轴int pivotkey = arr[pivotloc];int pit = left;  // 坑位while (left < right){// 从右往左搜索,找到第一个小于 pivotkey 的元素while (left < right && arr[right] >= pivotkey){--right;}arr[pit] = arr[right];pit = right;// 从左往右搜索,找到第一个大于 pivotkey 的元素while (left < right && arr[left] <= pivotkey){++left;}arr[pit] = arr[left];pit = left;}// left 和 right 相遇,即 left == rightarr[pit] = pivotkey;pivotloc = pit;return pivotloc;
}

前后指针法

int Partion(int* arr, int left, int right)
{int pivotloc = left;  // 取第一个元素作为枢轴int pivotkey = arr[pivotloc];int prev = left;int cur = prev + 1;while (cur <= right){if (arr[cur] < pivotkey && ++prev != cur){Swap(&arr[prev], &arr[cur]);}++cur;}Swap(&arr[prev], &arr[pivotloc]);pivotloc = prev;return pivotloc;
}

3.2.2 - 优化

Hoare 版本为例,假设 int arr[10] = { 6, 1, 2, 7, 9, 3, 4, 5, 10, 8 },整个快速排序的递归过程如下图所示:

从快速排序递归算法的递归树可知,快速排序的趟数取决于递归树的深度

最好情况:每一趟排序后都能将记录均匀地分割成两个大致相等的子表,类似于二分查找,时间复杂度为 O(nlogn)

最坏情况:在待排序序列已经排好序的情况下,其递归树成为单支数,每次划分只得到一个比上一次少一个记录的子序列,时间复杂度为 O(n^2)

枢轴的合理选择可以避免最坏情况的出现,如利用 "三者取中" 的规则:比较当前表中第一个记录、最后一个记录和中间一个记录的关键字,取关键字居中的记录作为枢轴记录,事先调换到第一个记录的位置。

int GetMidIndex(int* arr, int left, int right)
{int mid = left + (right - left) / 2;if (arr[left] < arr[mid]){if (arr[right] > arr[mid])return mid;else if (arr[right] > arr[left])return right;elsereturn left;}else{if (arr[right] > arr[left])return left;else if (arr[right] > arr[mid])return right;elsereturn mid;}
}
​
// 以 Hoare 版本为例
int Partion(int* arr, int left, int right)
{int ret = GetMidIndex(arr, left, right);if (ret != left){Swap(&arr[ret], &arr[left]);  // 将居中的元素交换到第一个元素的位置}int pivotloc = left;int pivotkey = arr[pivotloc];// ... ....
}

除此之外,还可以进一步优化,即小区间优化

#define MAX_LENGTH_INSERT_SORT 7  // 数组长度阈值
​
void QSort(int* arr, int left, int right)
{if (right - left + 1 > MAX_LENGTH_INSERT_SORT){// 将 arr[left...right] 一分为二,pivotloc 是枢轴位置int pivotloc = Partion(arr, left, right);  // 对左子表递归排序QSort(arr, left, pivotloc - 1);// 对右子表递归排序QSort(arr, pivotloc + 1, right);}else{InsertSort(arr + left, right - left + 1);}
}

3.2.3 - 非递归算法

可以借助将递归算法改写成非递归算法。

void QuickSortNonRecursion(int* arr, int n)
{Stack st;StackInit(&st);range r = { 0, n - 1 };  // 区间StackPush(&st, r);while (!StackEmpty(&st)){range top = StackTop(&st);StackPop(&st);if (top.left < top.right){int pivotloc = Partion(arr, top.left, top.right);range rr = { pivotloc + 1, top.right };  // 右区间StackPush(&st, rr);range lr = { top.left, pivotloc - 1 };  // 左区间StackPush(&st, lr);}}StackDestroy(&st);
}


四、选择排序

选择排序的基本思想是:每一趟从待排序的记录中选出关键字最小的记录,按顺序放在已排序的记录序列的最后,直到全部排完为止。

4.1 - 简单选择排序

简单选择排序(Simple Selection Sort)也称作直接选择排序

算法步骤

  1. 设待排序的记录存放在数组 arr[0...n-1] 中。第一趟从 arr[0] 开始,通过 n - 1 次比较,从 n 个记录中选出关键字最小的记录,记为 arr[k],交换 arr[0]arr[k]

  2. 第二趟从 arr[1] 开始,通过 n - 2 次比较,从 n - 1 个记录中选出关键字最小的记录,记为 arr[k],交换 arr[1]arr[k]

  3. 重复上述过程,经过 n - 1 趟,排序完成。

void SelectSort(int* arr, int n)
{for (int i = 0; i < n - 1; ++i){int k = i;for (int j = i + 1; j < n; ++j){if (arr[j] < arr[k]){k = j;}}if (k != i)  // 交换 arr[i] 和 arr[k]{Swap(&arr[i], &arr[k]);}}
}

改进

void SelectSort(int* arr, int n)
{for (int i = 0; i < n - 1; ++i, --n){int mini = i;  // 最小的元素下标int maxi = i;  // 最大的元素下标for (int j = i + 1; j < n; ++j){if (arr[j] < arr[mini]){mini = j;}if (arr[j] > arr[maxi]){maxi = j;}}if (mini != i){Swap(&arr[mini], &arr[i]);}if (maxi == i){maxi = mini;}if (maxi != n - 1){Swap(&arr[maxi], &arr[n - 1]);}}
}

最开始 arr[i] 可能就是关键字最大的记录,但经过交换后,即 Swap(&arr[mini], &arr[i])arr[i] 就变成了关键字最小的记录,因此,如果不修改 maxi,就会错误。

4.2 - 堆排序

算法步骤

  1. 按堆的定义将待排序记录 arr[0...n-1] 调整为大根堆(这个过程称为建初堆),交换 arr[0]arr[n - 1],则 arr[n - 1] 为关键字最大的记录。

  2. arr[0...n-2] 重新调整为堆,交换 arr[0]arr[n - 2],则 arr[n - 2] 为关键字次大的记录。

  3. 循环 n - 1 次,直到交换了 arr[0]arr[1],得到了一个非递减的有序序列 arr[0...n-1]

同样,可以通过构造小根堆得到一个非递增的有序序列

// 向下调整堆
void HeapAdjustDown(int* arr, int n, int parent)
{int child = 2 * parent + 1;  // 假设左孩子较大while (child < n){if (child + 1 < n && arr[child + 1] > arr[child]){++child;}if (arr[parent] < arr[child]){Swap(&arr[parent], &arr[child]);parent = child;child = 2 * parent + 1;}else{break;}}
}
​
// 建初堆
void HeapCreate(int* arr, int n)
{for (int i = (n - 2) / 2; i >= 0; --i){HeapAdjustDown(arr, n, i);}
}
​
// 堆排序
void HeapSort(int* arr, int n)
{HeapCreate(arr, n);for (int i = n - 1; i > 0; --i){Swap(&arr[0], &arr[i]);HeapAdjustDown(arr, i, 0);}
}


五、归并排序

归并排序(Merging Sort)就是将两个或两个以上的有序表合并成一个有序表的过程。将两个有序表合并成一个有序表的过程称为 2-路归并

归并排序算法的思想是:假设初始序列含有 n 个记录,则可看成是 n 个有序的子序列,每个子序列的长度为 1,然后两两归并,得到 ​ 个长度为 2 或 1 的有序子序列;再两两归并,... ...,如此重复,直至得到一个长度为 n 的有序序列为止。

5.1 - 递归

void Merge(int* arr, int* tmp, int left, int mid, int right)
{int i = left;int j = mid + 1;int k = left;while (i <= mid && j <= right){if (arr[i] <= arr[j]){tmp[k++] = arr[i++];}else{tmp[k++] = arr[j++];}}while (i <= mid){tmp[k++] = arr[i++];}while (j <= right){tmp[k++] = arr[j++];}// 最后将 tmp 中的内容拷贝到原数组 arr 中memmove(arr + left, tmp + left, sizeof(int) * (right - left + 1));
}
​
void MSort(int* arr, int* tmp, int left, int right)
{if (left < right){int mid = (left + right) / 2;// 对子序列 arr[left...mid] 递归归并排序MSort(arr, tmp, left, mid); // 对子序列 arr[mid+1...right] 递归归并排序MSort(arr, tmp, mid + 1, right);// 将相邻的两个有序表 arr[left...mid] 和 arr[mid+1...right] // 归并为有序表 arr[left...right]Merge(arr, tmp, left, mid, right);}
}
​
void MergeSort(int* arr, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (NULL == tmp){perror("malloc failed!");return;}MSort(arr, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

5.2 - 迭代

void MergeSortNonRecursion(int* arr, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (NULL == tmp){perror("malloc failed!");return;}int gap = 1;  // gap 表示间距while (gap < n){for (int i = 0; i < n; i += 2 * gap){int left = i;int right = i + 2 * gap - 1;int mid = (left + right) / 2;if (mid + 1 >= n){break;}if (right >= n){right = n - 1;}Merge(arr, tmp, left, mid, right);}gap *= 2;}free(tmp);tmp = NULL;
}

迭代过程并非模拟归并排序的递归过程

例一

例二


六、排序算法复杂度及稳定性分析

排序方法平均情况最好情况最坏情况辅助空间稳定性
直接插入排序O(n^2)O(n)O(n^2)O(1)稳定
希尔排序O(nlogn) ~ O(n^2)O(n^2)O(1)不稳定
冒泡排序O(n^2)O(n)O(n^2)O(1)稳定
快速排序O(nlogn)O(n^2)O(nlogn)O(logn) ~ O(n)不稳定
简单选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
堆排序O(nlogn)O(nlogn)O(nlogn)O(1)不稳定
归并排序O(nlogn)O(nlogn)O(nlogn)O(n)稳定

性能测试

void TestPerformace()
{srand((unsigned int)time(NULL));int n = 1000000;int* arr1 = (int*)malloc(sizeof(int) * n);int* arr2 = (int*)malloc(sizeof(int) * n);int* arr3 = (int*)malloc(sizeof(int) * n);int* arr4 = (int*)malloc(sizeof(int) * n);int* arr5 = (int*)malloc(sizeof(int) * n);int* arr6 = (int*)malloc(sizeof(int) * n);int* arr7 = (int*)malloc(sizeof(int) * n);if (!arr1 || !arr2 || !arr3 || !arr4 || !arr5 || !arr6 || !arr7){perror("malloc failed!");return;}for (int i = 0; i < n; ++i){arr1[i] = rand();arr2[i] = arr1[i];arr3[i] = arr1[i];arr4[i] = arr1[i];arr5[i] = arr1[i];arr6[i] = arr1[i];arr7[i] = arr1[i];}// 开始测试int begin1 = clock();InsertSort(arr1, n);int end1 = clock();
​int begin2 = clock();ShellSort(arr2, n);int end2 = clock();
​int begin3 = clock();BubbleSort(arr3, n);int end3 = clock();
​int begin4 = clock();QuickSort(arr4, n);int end4 = clock();
​int begin5 = clock();SelectSort(arr5, n);int end5 = clock();
​int begin6 = clock();HeapSort(arr6, n);int end6 = clock();
​int begin7 = clock();MergeSort(arr7, n);int end7 = clock();printf("InsertSort: %d\n", end1 - begin1);printf("ShellSort: %d\n", end2 - begin2);printf("BubbleSort: %d\n", end3 - begin3);printf("QuickSort: %d\n", end4 - begin4);printf("SelectSort: %d\n", end5 - begin5);printf("HeapSort: %d\n", end6 - begin6);printf("MergeSort: %d\n", end7 - begin7);free(arr1);free(arr2);free(arr3);free(arr4);free(arr5);free(arr6);free(arr7);
}

非比较排序(计数排序、基数排序和桶排序)会在下一篇博客中详解~

创作不易,请点点赞和关注一下博主


http://www.ppmy.cn/news/41690.html

相关文章

【创作赢红包】python学习——【第七弹】

前言 上一篇文章 python学习——【第六弹】中介绍了 python中的字典操作&#xff0c;这篇文章接着学习python中的可变序列 集合 集合 1&#xff1a; 集合是python语言提供的内置数据结构&#xff0c;具有无序性&#xff08;集合中的元素无法通过索引下标访问&#xff0c;并且…

详解AUTOSAR:Green Hills Software(GHS)集成DaVinci Configurator生成的代码(RH850)(环境配置篇—1)

目录 1、工程搭建 2、配置工程IDE 3、配置工程文件 4、问题总结 1、工程搭建 在下图所示的Sample文件夹下选择对应芯片型号的空工程,添加所需模块的相关代码(MCAL包内)和使用命令行工具生成的模块.c、.h代码文件。

交接机的基本原理

第七章&#xff1a;交接机的基本原理 在网络中传输数据时需要遵循一些标准&#xff0c;以太网协议定义了数据帧在以太网上的传输标准&#xff0c;了解以太网协议是充分理解数据链路层通信的基础。以太网交换机是实现数据链路层通信的主要设备&#xff0c;了解以太网交换机的工作…

一文搞懂SQL注入攻击

SQL注入攻击1. 前言2. SQL注入简介3. SQL注入步骤4. 防范SQL注入1. 前言 随着互联网的发展和普及&#xff0c;网络安全问题越来越突出&#xff0c;网络在为用户提供越来越多服务的同时&#xff0c;也要面对各类越来越复杂的恶意攻击。SQL注入&#xff08;SQL Injection&#x…

伪随机码和密码找回漏洞

伪随机码漏洞 伪随机码结构可以预先确定&#xff0c;重复产生和复制&#xff0c;具有某种随机序列的随机特性的序列号。Web开发中伪随机码主要用于确定范围&#xff0c;php中rand()函数可以产生随机数例如&#xff1a;rand(000000,999999)&#xff0c;一般是手机验证码。 可通…

《花雕学AI》19:比较ChatGPT与新Bing在文章润色方面的应用优势与测试案例

引言&#xff1a; 文章润色是指对已经写好的文章进行修改、优化或完善的过程&#xff0c;以提高文章的质量和效果。文章润色涉及到多方面的内容&#xff0c;如语言表达、逻辑结构、文献引用、格式规范等。文章润色对于提升写作水平、提高论文发表率、增加学术影响力等都有重要意…

Set接口,

接本介绍 无序&#xff08;添加和取出的顺序不一致&#xff09;&#xff0c;没有索引不允许重负元素&#xff0c;所以最多包含一个nullSet接口的常用方法 和List接口一样&#xff0c;Set接口也是Collection的子接口&#xff0c;因此&#xff0c;常用方法和Collection一样Set接口…

面试造航母,入职拧螺丝,工资...

有粉丝跟我吐槽说&#xff1a;金三银四去面试软件测试岗&#xff0c;真的是面试造航母&#xff0c;入职拧螺丝&#xff0c;工资还低 这种现象很正常&#xff0c;因为找一个测试员&#xff0c;当然希望他能做的业务越多越好&#xff0c;最好像机器猫一样&#xff0c;啥事儿都能…