展开全部
步骤一:分析数据的平稳性(单位根检验)。
按照正规程序,面板数据模型在回归前需32313133353236313431303231363533e59b9ee7ad9431333433643732检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
步骤二:协整检验或模型修正。
情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。
所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我们称这些变量序列间有协整关系存在。因此协整的要求或前提是同阶单整。
步骤三:面板模型的选择与回归。
面板数据模型的选择通常有三种形式:
一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。
一种是固定效应模型(Fixed Effects Regression Model)。如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。
一种是随机效应模型。
扩展资料:
面板数据模型可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5