目录
1.题目
2.中文翻译
3.思路解析:
4.代码实现:
1.题目
One Person Game
Description
There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B . There are 6 kinds of operations you can perform in one step. That is to go left or right by a,b and c , here c always equals to a+b .
You must arrive B as soon as possible. Please calculate the minimum number of steps.
Input
There are multiple test cases. The first line of input is an integer $T(0 < T ≤ 1000) $indicates the number of test cases. Then T test cases follow. Each test case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. ($-2^{31} ≤ A, B < 2^{31}, 0 < a, b < 2^{31}$)
Output
For each test case, output the minimum number of steps. If it’s impossible to reach point B, output “-1” instead.
Examples
intput
2
0 1 1 2
0 1 2 4
output
1
-1
2.中文翻译
题目描述
有一个有趣而简单的单人游戏。假设你脚下有一个数字轴。你一开始是在点 A ,你的目标是点 B 。一步可以执行6种操作。也就是向左或向右移动 a、b 和 c ,这里 c 总是等于 a+b 。
你必须尽快到达B。请计算最小步数。
输入
有多个测试用例。输入的第一行是一个整数 T(0<T≤1000) 表示测试用例的数量。然后是T行测试案例。每个测试用例由一行表示,该行包含四个整数4个整数 A、B、a 和 b,用空格分隔。(-2^{31}≤A,B<2^{31},0<A,B<2^{3})
输出
对于每个测试用例,输出最小步骤数。如果无法到达B点,则输出“-1”。
样例输入
样例输出
3.思路解析:
1.题目其实就是求 C1*a + C2*b + C3*c + C4*(-a)+C5*(-b)+C6*(-c)| = |A-B|,根据题意化简之后就变成了 |C1a+C_2b| = |A-B| ,目的就是判断左边这个方程是否有解.
2.欧几里得扩展算法:我的算法专栏里面有讲解。
4.代码实现:
#include <algorithm>
#include <string.h>
#include <iostream>
#include <stdio.h>
#include <string>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int N = 1e5+10;LL exgcd(LL a,LL b,LL &x,LL &y)
{if(b==0){x=1, y=0;return a;}LL ans=exgcd(b,a%b,x,y);LL tmp=x;x=y;y=tmp-a/b*y;return ans;
}int main()
{int t;scanf("%d", &t);while(t--){LL A, B, a, b, c, x, y;scanf("%lld %lld %lld %lld",&A, &B, &a, &b);if(A>B) swap(A,B);c=(B-A);LL g=exgcd(a,b, x, y);if(c%g!=0) puts("-1");else{a/=g, b/=g;x*=(c/g), y*=(c/g);LL k=(y-x)/(a+b);LL ans=10000000000ll;for(LL i=k-1;i<=k+1;i++){if(abs(x+i*b)+abs(y-i*a)==abs(x+i*b+y-i*a)) ans=min(ans,max(abs(x+i*b),abs(y-i*a)));else ans=min(ans,abs(x+i*b)+abs(y-i*a));}cout<<ans<<endl;}}return 0;
}