opencv训练自己的分类器,可替换各种目标识别

news/2024/11/7 9:37:30/

环境:opencv-4.0,python,c++
方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类器
流程:

  1. 收集样本,处理样本
  2. 训练分类器
  3. 目标检测

收集样本,处理样本

收集正样本

关于正样本的收集,一张或多张都可以,首先对样本进行处理,我收集了50个正样本。
在这里插入图片描述

处理正样本

处理样本,灰度化,归一化,大小为(50, 50)

path = "/home/yk/project/pyCharm/train/true/"
for i in range(1, 51):print(path+str(i)+'.jpg')img = cv2.imread(path+str(i)+'.jpg', cv2.IMREAD_GRAYSCALE)img5050 = cv2.resize(img, (50, 50))cv2.imshow("img", img5050)cv2.waitKey(20)cv2.imwrite('/home/yk/project/pyCharm/train/pos/'+str(i)+'.jpg', img5050)

处理后效果
在这里插入图片描述

收集负样本

关于负样本,只要不含有正样本图片即可,最好是识别场景的图片。
我找到一个负样本下载链接。https://pythonprogramming.net/static/images/opencv/negative-background-images.zip
下载后如图

在这里插入图片描述

生成描述文件

正负样本描述文件生成。

import os
def create_pos_n_neg():for file_type in ['neg']:for img in os.listdir(file_type):if (file_type == 'neg'):line = file_type + '/' + img + '\n'with open('bg.txt', 'a') as f:f.write(line)elif (file_type == 'pos'):line = file_type + '/' + img + ' 1 0 0 50 50\n'with open('info.txt', 'a') as f:f.write(line)if __name__ == '__main__':create_pos_n_neg()
  1. 正样本描述文件
    在这里插入图片描述
    内容
    在这里插入图片描述
  2. 负样本描述文件
    在这里插入图片描述
    内容
    在这里插入图片描述

合成正样本vec

首先将opencv的两个自带工具复制到文件夹中,opencv_createsamples用于处理生成样本,opencv_traincascade用于训练分类器。
在这里插入图片描述

  1. 如果用单个样本生成vec执行命令
mkdir info
opencv_createsamples -img pos/1.jpg -bg bg.txt -info info/info.lst -pngoutput info -maxxangle 0.5 -maxyangle 0.5 -maxzangle 0.5 -num 1950

运行后显示Done,表示成功。
打开文件夹info
在这里插入图片描述
在最下面还有info.lst

输入命令

opencv_createsamples -info info/info.lst -num 1950 -w 50 -h 50 -vec pos.vec

在这里插入图片描述
完成。

  1. 如果用多个样本生成vec

使用工具createsample.pl合成正样本的vec。
在这里插入图片描述
代码

#!/usr/bin/perl
use File::Basename;
use strict;
##########################################################################
# Create samples from an image applying distortions repeatedly 
# (create many many samples from many images applying distortions)
#
#  perl createtrainsamples.pl <positives.dat> <negatives.dat> <vec_output_dir>
#      [<totalnum = 7000>] [<createsample_command_options = ./createsamples -w 20 -h 20...>]
#  ex) perl createtrainsamples.pl positives.dat negatives.dat samples
#
# Author: Naotoshi Seo
# Date  : 09/12/2008 Add <totalnum> and <createsample_command_options> options
# Date  : 06/02/2007
# Date  : 03/12/2006
#########################################################################
my $cmd = './createsamples -bgcolor 0 -bgthresh 0 -maxxangle 1.1 -maxyangle 1.1 maxzangle 0.5 -maxidev 40 -w 20 -h 20';
my $totalnum = 7000;
my $tmpfile  = 'tmp';if ($#ARGV < 2) {print "Usage: perl createtrainsamples.pl\n";print "  <positives_collection_filename>\n";print "  <negatives_collection_filename>\n";print "  <output_dirname>\n";print "  [<totalnum = " . $totalnum . ">]\n";print "  [<createsample_command_options = '" . $cmd . "'>]\n";exit;
}
my $positive  = $ARGV[0];
my $negative  = $ARGV[1];
my $outputdir = $ARGV[2];
$totalnum     = $ARGV[3] if ($#ARGV > 2);
$cmd          = $ARGV[4] if ($#ARGV > 3);open(POSITIVE, "< $positive");
my @positives = <POSITIVE>;
close(POSITIVE);open(NEGATIVE, "< $negative");
my @negatives = <NEGATIVE>;
close(NEGATIVE);# number of generated images from one image so that total will be $totalnum
my $numfloor  = int($totalnum / $#positives);
my $numremain = $totalnum - $numfloor * $#positives;# Get the directory name of positives
my $first = $positives[0];
my $last  = $positives[$#positives];
while ($first ne $last) {$first = dirname($first);$last  = dirname($last);if ( $first eq "" ) { last; }
}
my $imgdir = $first;
my $imgdirlen = length($first);for (my $k = 0; $k < $#positives; $k++ ) {my $img = $positives[$k];my $num = ($k < $numremain) ? $numfloor + 1 : $numfloor;# Pick up negative images randomlymy @localnegatives = ();for (my $i = 0; $i < $num; $i++) {my $ind = int(rand($#negatives));push(@localnegatives, $negatives[$ind]);}open(TMP, "> $tmpfile");print TMP @localnegatives;close(TMP);#system("cat $tmpfile");!chomp($img);my $vec = $outputdir . substr($img, $imgdirlen) . ".vec" ;print "$cmd -img $img -bg $tmpfile -vec $vec -num $num" . "\n";system("$cmd -img $img -bg $tmpfile -vec $vec -num $num");
}
unlink($tmpfile);

输入命令
先生成正样本目录,再生成vec文件

find ./neg -iname "*.jpg" >neg.txt
find ./pos -iname "*.jpg" >pos.txt
perl bin/createsamples.pl pos.txt neg.txt samples 1500   "opencv_createsamples -bgcolor 0 -bgthresh 0 -maxxangle 1.1 -maxyangle 1.1 -maxzangle 0.5 -maxidev 40 -w 50 -h 50" 

运行后打开samples文件夹,可以看到vec文件

在这里插入图片描述
再用mergevec工具将这些vec文件合成到一个vec文件中

###############################################################################
# Copyright (c) 2014, Blake Wulfe
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
###############################################################################"""
File: mergevec.py
Author: blake.w.wulfe@gmail.com
Date: 6/13/2014
File Description:This file contains a function that merges .vec files called "merge_vec_files".I made it as a replacement for mergevec.cpp (created by Naotoshi Seo.See: http://note.sonots.com/SciSoftware/haartraining/mergevec.cpp.html)in order to avoid recompiling openCV with mergevec.cpp.To use the function:(1) Place all .vec files to be merged in a single directory (vec_directory).(2) Navigate to this file in your CLI (terminal or cmd) and type "python mergevec.py -v your_vec_directory -o your_output_filename".The first argument (-v) is the name of the directory containing the .vec filesThe second argument (-o) is the name of the output fileTo test the output of the function:(1) Install openCV.(2) Navigate to the output file in your CLI (terminal or cmd).(2) Type "opencv_createsamples -w img_width -h img_height -vec output_filename".This should show the .vec files in sequence."""import sys
import glob
import struct
import argparse
import tracebackdef exception_response(e):exc_type, exc_value, exc_traceback = sys.exc_info()lines = traceback.format_exception(exc_type, exc_value, exc_traceback)for line in lines:print(line)def get_args():parser = argparse.ArgumentParser()parser.add_argument('-v', dest='vec_directory')parser.add_argument('-o', dest='output_filename')args = parser.parse_args()return (args.vec_directory, args.output_filename)def merge_vec_files(vec_directory, output_vec_file):"""Iterates throught the .vec files in a directory and combines them.(1) Iterates through files getting a count of the total images in the .vec files(2) checks that the image sizes in all files are the sameThe format of a .vec file is:4 bytes denoting number of total images (int)4 bytes denoting size of images (int)2 bytes denoting min value (short)2 bytes denoting max value (short)ex: 	6400 0000 4605 0000 0000 0000hex		6400 0000  	4605 0000 		0000 		0000# images  	size of h * w		min		maxdec	    	100     	1350			0 		0:type vec_directory: string:param vec_directory: Name of the directory containing .vec files to be combined.Do not end with slash. Ex: '/Users/username/Documents/vec_files':type output_vec_file: string:param output_vec_file: Name of aggregate .vec file for output.Ex: '/Users/username/Documents/aggregate_vec_file.vec'"""# Check that the .vec directory does not end in '/' and if it does, remove it.if vec_directory.endswith('/'):vec_directory = vec_directory[:-1]# Get .vec filesfiles = glob.glob('{0}/*.vec'.format(vec_directory))# Check to make sure there are .vec files in the directoryif len(files) <= 0:print('Vec files to be mereged could not be found from directory: {0}'.format(vec_directory))sys.exit(1)# Check to make sure there are more than one .vec filesif len(files) == 1:print('Only 1 vec file was found in directory: {0}. Cannot merge a single file.'.format(vec_directory))sys.exit(1)# Get the value for the first image sizeprev_image_size = 0try:with open(files[0], 'rb') as vecfile:content = b''.join((line) for line in vecfile.readlines())val = struct.unpack('<iihh', content[:12])prev_image_size = val[1]except IOError as e:print('An IO error occured while processing the file: {0}'.format(f))exception_response(e)# Get the total number of imagestotal_num_images = 0for f in files:try:with open(f, 'rb') as vecfile:content = b''.join((line) for line in vecfile.readlines())val = struct.unpack('<iihh', content[:12])num_images = val[0]image_size = val[1]if image_size != prev_image_size:err_msg = """The image sizes in the .vec files differ. These values must be the same. \n The image size of file {0}: {1}\nThe image size of previous files: {0}""".format(f, image_size, prev_image_size)sys.exit(err_msg)total_num_images += num_imagesexcept IOError as e:print('An IO error occured while processing the file: {0}'.format(f))exception_response(e)# Iterate through the .vec files, writing their data (not the header) to the output file# '<iihh' means 'little endian, int, int, short, short'header = struct.pack('<iihh', total_num_images, image_size, 0, 0)try:with open(output_vec_file, 'wb') as outputfile:outputfile.write(header)for f in files:with open(f, 'rb') as vecfile:content = b''.join((line) for line in vecfile.readlines())outputfile.write(bytearray(content[12:]))except Exception as e:exception_response(e)if __name__ == '__main__':vec_directory, output_filename = get_args()if not vec_directory:sys.exit('mergvec requires a directory of vec files. Call mergevec.py with -v /your_vec_directory')if not output_filename:sys.exit('mergevec requires an output filename. Call mergevec.py with -o your_output_filename')merge_vec_files(vec_directory, output_filename)

输入命令

python ./tools/mergevec.py -v samples/ -o pos.vec

在这里插入图片描述
到此,样本准备工作结束。下面可以开始训练自己的分类器了。

训练分类器

创建data文件夹,用于存放分类器数据
mkdir data
训练
opencv_traincascade -data data -vec pos.vec -bg neg.txt -numStages 20 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos 1000 -numNeg 600 -w 50 -h 50 -mode ALL
在这里插入图片描述
等待运行结束,打开data就可以看见我们训练的分类器了。
在这里插入图片描述
参数解释

  • data data:训练后data目录下会存储训练过程中生成的文件
  • vec pos.vec:Pos.vec是通过opencv_createsamples生成的vec文件,命令opencv_createsamples -vec pos.vec -info info.txt -bg bg.txt -w 70 -h 70
    其中pos.txt中t除了存放图片名外,还存放了图像中目标的boundingbox的Rect。
  • bg bg.txt:bg.txt是负样本文件的数据
  • numPos :正样本的数目,这个数值一定要比准备正样本时的数目少,不然会报can not get new positive sample.
  • numNeg :
  • numStages :训练分类器的级数
  • w 50:必须与opencv_createsample中使用的-w值一致
  • h 50:必须与opencv_createsample中使用的-h值一致
    注:-w和-h的大小对训练时间的影响非常大,我测试了两个不同尺寸下的训练,分别是Size(50,50)和Size(70,70),后者所用的时间至少是前者的4-5倍。网上有博客说-w和-h的比例必须符合真实目标的比例。
  • minHitRate 0.9999:分类器的每一级希望得到的最小检测率,总的最大检测率大约为min_hit_ratenumber_of_stages
    minHitRate:影响每个强分类器阈值,当设置为0.95时如果正训练样本个数为10000个,那么其中的500个就很可能背叛别为负样本,第二次选择的时候必须多选择后面的500个,按照这种规律为后面的每级多增加numPos
    minHitRate个正样本,根据训练的级数可以得到如下公式
    numPos+(numStages-1)numPos(1-minHitRate)<=准备的训练样本
  • featureType LBP: 训练时,提取图像特征的类型,目前只支持LBP、HOG、Haar三种特征。但是HAAR训练非常非常的慢,而LBP则相对快很多,因为HAAR需要浮点运算,精度自然比LBP更高,但是LBP的效果也基本能达到HAAR的效果,所以我选择使用LBP。
  • maxFalseAlarmRate 0.2:分类器的每一级希望得到的最大误检率,总的误检率大约为max_false_rate*number_of_stages
  • mode ALL:选择用来训练的haar特征集的种类。basic仅仅使用垂直特征。all使用垂直和45度角旋转特征。

目标检测

代码

//
// Created by yk on 19-8-29.
//
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"#include <iostream>using namespace std;
using namespace cv;void detectAndDisplay(Mat frame);
//使用级联分类器类加载视频中对象
CascadeClassifier face_cascade;					//face
CascadeClassifier eyes_cascade;					//eyes
CascadeClassifier helmet_cascade;               //helmetint main(int argc, const char** argv)
{CommandLineParser parser(argc, argv,"{face_cascade|/home/yk/install/opencv/data/haarcascades/haarcascade_frontalface_alt.xml|Path to face cascade.}""{helmet_cascade|/home/yk/project/CLion/test/cascade/cascade.xml|Path to helmet cascade.}");String face_cascade_name = parser.get<String>("face_cascade");String helmet_cascade_name = parser.get<String>("helmet_cascade");if (!face_cascade.load(face_cascade_name)){cout << "无法加载face cascade\n";return -1;};if (!helmet_cascade.load(helmet_cascade_name)){cout << "无法加载helmet cascade\n";return -1;};Mat frame = imread("/home/yk/project/CLion/test/pic/14.jpg");detectAndDisplay(frame);return 0;
}void detectAndDisplay(Mat frame)
{double scale(1.3);Mat gray, smallImg(cvRound(frame.rows/scale), cvRound(frame.cols/scale), CV_8UC1);  //缩小图片cvtColor(frame, gray, COLOR_BGR2GRAY);					                            //转灰度图resize(gray, smallImg, smallImg.size())equalizeHist(gray, gray);							                                //直方图等化std::vector<Rect> faces;face_cascade.detectMultiScale(gray, faces);std::vector<Rect> helmets;helmet_cascade.detectMultiScale(gray, helmets);for (size_t k = 0; k < helmets.size(); k++){cout<<helmets[k];rectangle(frame, helmets[k], Scalar(0, 0, 255), 4);putText(frame, "helmet", Point(helmets[k].x,helmets[k].y), FONT_HERSHEY_COMPLEX, 1, Scalar(255,23,0),4,8);}for (size_t i = 0; i < faces.size(); i++){Point top_left(faces[i].x, faces[i].y);Point low_right(faces[i].x + faces[i].width, faces[i].y + faces[i].height);rectangle(frame, top_left, low_right, Scalar(0, 0, 255), 4);putText(frame, "face", Point(faces[i].x+50,faces[i].y), FONT_HERSHEY_COMPLEX, 1, Scalar(255,23,0),4,8);}imshow("Capture", frame);waitKey(0);
}

识别效果
在这里插入图片描述


http://www.ppmy.cn/news/350616.html

相关文章

pc+树莓派+ opencv 分类器

基本文件 工具下载:https://download.csdn.net/download/weixin_42206625/12869520 在 pc 上安装 opencv 打开命令行 pip install opencv-python==4.1.2.30这里指定安装版本 正样本 首先用手机拍几十张上百张只有需识别对象的照片, 运行 正样本_txt生成.py 处理正样本,…

论文翻译(五):SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

文章目录 摘要1.介绍2.文献综述3.网络结构3.1解码器变体3.2训练3.3分析 4.基准测试4.1道路场景分割4.2SUN RGB-D室内场景 5.讨论和未来的工作6结论 摘要 我们提出了一种新的实用的语义像素级分割的深度全卷积神经网络结构称为SegNet。 这个核心的可训练分割引擎由一个编码器网…

opencv+python识别猪

背景&#xff1a;在车载监控回传的视频里判断该车里是否有猪 解决思路&#xff1a;在回传视频里做物体识别&#xff0c;如果有猪就框出来并且给出一个代表值 day1 2021-10-27 设想&#xff1a;物体识别&#xff0c;并且在图中框出来猪 1.找正样本 最开始对正样本负样本bla…

opencv_分类器训练指导

环境&#xff1a;opencv-4.0&#xff0c;python&#xff0c;c 方法&#xff1a;opencv_createsamples&#xff0c;opencv_traincascade&#xff0c;haar特征或者lbp特征cascade分类器 流程&#xff1a; 收集样本&#xff0c;处理样本 训练分类器 目标检测 一. 收集样本…

Opencv造出属于自己的xml训练器

一、基本步骤 1.利用python爬虫爬取&#xff08;也可以手动收集&#xff09;图片集&#xff0c;分为pos&#xff08;正相关&#xff0c;要识别的&#xff09;和neg&#xff08;负相关&#xff0c;里面没有pos&#xff0c;一般是背景之类的无关图&#xff09;一般1&#xff1a;…

UbuntuServer搭建打印服务器

打印服务器无疑需要的是CUPS(Common Unix Print System)&#xff0c;配置及管理还是很简单。但安装驱动却是麻烦事&#xff0c;除非打印机驱动很容易得到&#xff0c;唉&#xff0c;本人就遇到了一麻烦事&#xff0c;服务器操作系统为Ubuntuserver 12.04.1 amd64&#xff0c;打…

这个618,网工最值得买的路由器/交换机设备

大家好&#xff0c;我是老杨。 有小友最近扎堆冒出来问我&#xff0c;企业要采购路由器/交换机&#xff0c;买啥牌子好&#xff0c;买啥型号好。 又或者是&#xff0c;家里要买家用的路由器/电脑&#xff0c;啥性价比最高&#xff1f; 我真的很想吐槽一句&#xff0c;你们再问…

SEMICON China 2023| 加速科技将携全系新品重磅亮相,欢迎打卡加速科技展台

2023年6月29日-7月1日&#xff0c;全球规模最大、规格最高的半导体行业盛会—SEMICON China 2023将在上海新国际博览中心盛大举行。作为业内领先的半导体测试设备供应商&#xff0c;杭州加速科技将携全系重磅新品及全系列测试解决方案受邀参展。 展位信息&#xff1a;E5馆 5643…