PyTorch 之 强大的 hub 模块和搭建神经网络进行气温预测

news/2024/10/30 23:23:06/

文章目录

  • 一、强大的 hub 模块
    • 1. hub 模块的使用
    • 2. hub 模块的代码演示
  • 二、搭建神经网络进行气温预测
    • 1. 数据信息处理
    • 2. 数据图画绘制
    • 3. 构建网络模型
    • 4. 更简单的构建网络模型

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052
在这里插入图片描述

一、强大的 hub 模块

  • hub 模块是调用别人训练好的网络架构以及训练好的权重参数,使得自己的一行代码就可以解决问题,方便大家进行调用。
  • hub 模块的 GITHUB 地址是 https://github.com/pytorch/hub。
  • hub 模块的模型 网址是 https://pytorch.org/hub/research-models。

1. hub 模块的使用

  • 首先,我们进入网址。会出现如下的界面(这其中就是别人训练好的模型,我们通过一行代码就可以实现调用)。

在这里插入图片描述

  • 然后,我们随便点开一个模型,会出现如下界面。

在这里插入图片描述

  • 其中,第一个按钮是对应的 GITHUB 代码,第二个是使用谷歌配置好的实验环境,第三个进行模型演示。

2. hub 模块的代码演示

  • 首先,我们进行基本的导入。
import torch
model = torch.hub.load('pytorch/vision:v0.4.2', 'deeplabv3_resnet101', pretrained=True)
model.eval()
  • 我们可以使用 hub.list() 查看对应 pytorch 版本的模型信息。
torch.hub.list('pytorch/vision:v0.4.2')
#Using cache found in C:\Users\Administrator/.cache\torch\hub\pytorch_vision_v0.4.2
#['alexnet',
# 'deeplabv3_resnet101',
# 'densenet121',
# 'densenet161',
# 'densenet169',
# 'densenet201',
# 'fcn_resnet101',
# 'googlenet',
# 'inception_v3',
# 'mobilenet_v2',
# 'resnet101',
# 'resnet152',
# 'resnet18',
# 'resnet34',
# 'resnet50',
# 'resnext101_32x8d',
# 'resnext50_32x4d',
# 'shufflenet_v2_x0_5',
# 'shufflenet_v2_x1_0',
# 'squeezenet1_0',
# 'squeezenet1_1',
# 'vgg11',
# 'vgg11_bn',
# 'vgg13',
# 'vgg13_bn',
# 'vgg16',
# 'vgg16_bn',
# 'vgg19',
# 'vgg19_bn',
# 'wide_resnet101_2',
# 'wide_resnet50_2']
  • 我们可以从 pytorch 的网站上下载一个实例。
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
  • 我们执行样本,这里需要注意的是 torchvision。
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
​
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
  • 我们需要将输入和模型移动到GPU以获得速度(如果可用)。
# move the input and model to GPU for speed if available
if torch.cuda.is_available():input_batch = input_batch.to('cuda')model.to('cuda')with torch.no_grad():output = model(input_batch)['out'][0]
output_predictions = output.argmax(0)
  • 我们可以创建一个调色板,为每个类选择一种颜色。
# create a color pallette, selecting a color for each class
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
  • 我们可以使用 hub 模块中的模型绘制每种颜色 21 个类别的语义分割预测。​
# plot the semantic segmentation predictions of 21 classes in each color
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
r.putpalette(colors)import matplotlib.pyplot as plt
plt.imshow(r)
plt.show()

在这里插入图片描述

二、搭建神经网络进行气温预测

1. 数据信息处理

  • 在最开始,我们需要导入必备的库。
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
  • 我们需要观察一下自己的数据都有哪些信息,在此之前,我们需要进行数据的读入,并打印数据的前五行进行观察。
features = pd.read_csv('temps.csv')
features.head()
#year	month	day	week	temp_2	temp_1	average	actual	friend
#0	2016	1	1	Fri	45	45	45.6	45	29
#1	2016	1	2	Sat	44	45	45.7	44	61
#2	2016	1	3	Sun	45	44	45.8	41	56
#3	2016	1	4	Mon	44	41	45.9	40	53
#4	2016	1	5	Tues	41	40	46.0	44	41
  • 在我们的数据表中,包含如下数据信息:
  • (1) year 表示年数时间信息。
  • (2) month 表示月数时间信息。
  • (3) day 表示天数时间信息。
  • (4) week 表示周数时间信息。
  • (5) temp_2 表示前天的最高温度值。
  • (6) temp_1 表示昨天的最高温度值。
  • (7) average 表示在历史中,每年这一天的平均最高温度值。
  • (8) actual 表示这就是我们的标签值了,当天的真实最高温度。
  • (9) friend 表示这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了。
  • 在获悉每一个数据的信息之后,我们需要知道一共有多少个数据。
print('数据维度:', features.shape)
#数据维度: (348, 9)
  • (348, 9) 表示一共有 348 天,每一天有 9 个数据特征。
  • 对于这么多的数据,直接进行行和列的操作可能会不太容易,因此,我们可以导入时间数据模块,将其转换为标准的时间信息。
# 处理时间数据
import datetime
​
# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
  • 我们可以读取新列 dates 中的部分数据。
dates[:5]
#[datetime.datetime(2016, 1, 1, 0, 0),
# datetime.datetime(2016, 1, 2, 0, 0),
# datetime.datetime(2016, 1, 3, 0, 0),
# datetime.datetime(2016, 1, 4, 0, 0),
# datetime.datetime(2016, 1, 5, 0, 0)]

2. 数据图画绘制

  • 在基本数据处理完成后,我们就开始图画的绘制,在最开始,需要指定为默认的风格。
plt.style.use('fivethirtyeight')
  • 设置布局信息。
# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)
  • 设置标签值信息。
#标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
  • 绘制昨天也就是 temp_1 的数据图画。​
# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
  • 绘制前天也就是 temp_2 的数据图画。​
# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
  • 绘制朋友也就是 friend 的数据图画。
# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
  • 在上述信息设置完成后,开始图画的绘制。
plt.tight_layout(pad=2)

在这里插入图片描述

  • 对原始数据中的信息进行编码,这里主要是指周数信息。
# 独热编码
features = pd.get_dummies(features)
features.head(5)
#year	month	day	temp_2	temp_1	average	actual	friend	week_Fri	week_Mon	week_Sat	week_Sun	week_Thurs	week_Tues	week_Wed
#0	2016	1	1	45	45	45.6	45	29	1	0	0	0	0	0	0
#1	2016	1	2	44	45	45.7	44	61	0	0	1	0	0	0	0
#2	2016	1	3	45	44	45.8	41	56	0	0	0	1	0	0	0
#3	2016	1	4	44	41	45.9	40	53	0	1	0	0	0	0	0
#4	2016	1	5	41	40	46.0	44	41	0	0	0	0	0	1	0
  • 在周数信息编码完成后,我们将准确值进行标签操作,在特征数据中去掉标签数据,并将此时数据特征中的标签信息保存一下,并将其转换成合适的格式。
# 标签
labels = np.array(features['actual'])# 在特征中去掉标签
features= features.drop('actual', axis = 1)# 名字单独保存一下,以备后患
feature_list = list(features.columns)# 转换成合适的格式
features = np.array(features)
  • 我们可以查看此时特征数据的具体数量。
features.shape
#(348, 14)
  • (348, 14) 表示我们的特征数据当中一共有 348 个,每一个有 14 个特征。
  • 我们可以查看第一个的具体数据。
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features[0]
#array([ 0.        , -1.5678393 , -1.65682171, -1.48452388, -1.49443549,
#       -1.3470703 , -1.98891668,  2.44131112, -0.40482045, -0.40961596,
#       -0.40482045, -0.40482045, -0.41913682, -0.40482045])

3. 构建网络模型

x = torch.tensor(input_features, dtype = float)
​
y = torch.tensor(labels, dtype = float)# 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True) 
biases = torch.randn(128, dtype = float, requires_grad = True) 
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True) 
biases2 = torch.randn(1, dtype = float, requires_grad = True) 
​
learning_rate = 0.001 
losses = []for i in range(1000):# 计算隐层hidden = x.mm(weights) + biases# 加入激活函数hidden = torch.relu(hidden)# 预测结果predictions = hidden.mm(weights2) + biases2# 通计算损失loss = torch.mean((predictions - y) ** 2) losses.append(loss.data.numpy())# 打印损失值if i % 100 == 0:print('loss:', loss)#返向传播计算loss.backward()#更新参数weights.data.add_(- learning_rate * weights.grad.data)  biases.data.add_(- learning_rate * biases.grad.data)weights2.data.add_(- learning_rate * weights2.grad.data)biases2.data.add_(- learning_rate * biases2.grad.data)# 每次迭代都得记得清空weights.grad.data.zero_()biases.grad.data.zero_()weights2.grad.data.zero_()biases2.grad.data.zero_()#loss: tensor(8347.9924, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(152.3170, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(145.9625, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(143.9453, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(142.8161, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(142.0664, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(141.5386, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(141.1528, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(140.8618, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(140.6318, dtype=torch.float64, grad_fn=<MeanBackward0>)
  • 我们查看预测数据的具体数量,应该是一共有 348 个,每个只有一个值,也就是 (348,1)。
predictions.shape
#torch.Size([348, 1])

4. 更简单的构建网络模型

input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(torch.nn.Linear(input_size, hidden_size),torch.nn.Sigmoid(),torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
# 训练网络
losses = []
for i in range(1000):batch_loss = []# MINI-Batch方法来进行训练for start in range(0, len(input_features), batch_size):end = start + batch_size if start + batch_size < len(input_features) else len(input_features)xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)prediction = my_nn(xx)loss = cost(prediction, yy)optimizer.zero_grad()loss.backward(retain_graph=True)optimizer.step()batch_loss.append(loss.data.numpy())# 打印损失if i % 100==0:losses.append(np.mean(batch_loss))print(i, np.mean(batch_loss))
#0 3950.7627
#100 37.9201
#200 35.654438
#300 35.278366
#400 35.116814
#500 34.986076
#600 34.868954
#700 34.75414
#800 34.637356
#900 34.516705
  • 我们可以得到如下的预测训练结果,将其用图画的形式展现出来。
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]
​
test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
​
test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]
​
predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) 
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60'); 
plt.legend()# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

在这里插入图片描述


http://www.ppmy.cn/news/33035.html

相关文章

MongoDB【部署 01】mongodb最新版本6.0.5安装部署配置使用及mongodb-shell1.8.0安装使用(云盘分享安装文件)

云盘分享文件&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/11sbj1QgogYHPM4udwoB1rA 提取码&#xff1a;l2wz 1.mongodb简单介绍 MongoDB的 官网 内容还是挺丰富的。 是由 C语言编写的&#xff0c;是一个基于分布式文件存储的开源数据库系统。在高负载的情况下&…

【蓝桥杯集训·每日一题】AcWing 4005. 取石子游戏

文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析1. 正解2. 打表找规律2、时间复杂度3、代码详解三、知识风暴博弈论一、题目 1、原题链接 4005. 取石子游戏 2、题目描述 Alice 和 Bob 正在玩一个取石子游戏。 共有 n 个石子&#xff0c;双方轮流采取行动。 每…

03 安装gcc编译环境,scons编译程序小试牛刀

安装mingw 我的电脑已经安装过&#xff0c;下面主要说下配置环境我们将mingw的路径和scons的虚拟环境路径添加到临时的环境变量,这样做的好处是使用的时候添加&#xff0c;不与其它版本的全局的环境变量冲突。后期我编译ARM程序时把gcc临时环境变量改为arm-gcc路径即可。写一个…

Unity自带类 --- Time类

1.在Unity中&#xff0c;自己写的类&#xff08;脚本&#xff09;的名字不能与Unity已有的类的名字相同&#xff0c;如果相同的话就会导致一个错误 --- 当我们在脚本中想调用Unity自带的类的时候&#xff0c;我们只能够调用到自己写的那个与其重名的类&#xff08;就近原则调用…

第一个 Qt 程序

第一个 Qt 程序 “hello world ”的起源要追溯到 1972 年&#xff0c;贝尔实验室著名研究员 Brian Kernighan 在撰写 “B 语言教程与指导(Tutorial Introduction to the Language B)”时初次使用&#xff08;程序&#xff09;&#xff0c;这是目前已 知最早的在计算机著作中将…

【深度强化学习】(8) iPPO 模型解析,附Pytorch完整代码

大家好&#xff0c;今天和各位分享一下多智能体深度强化学习算法 ippo&#xff0c;并基于 gym 环境完成一个小案例。完整代码可以从我的 GitHub 中获得&#xff1a;https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Model 1. 算法原理 多智能体的情形相比于单智…

在visual studio 2022 C++中配置最新版OpenCV和可能错误解决方案

前面我们写了一篇博文有关在C#中配置OpenCV&#xff0c;但C#版本的OpenCV的学习资源相对较少&#xff0c;C版的和Python版的比较多。这里先说说C版的如何配置吧&#xff01;总共完成四步即可使用起来。 文章目录一、下载并安装OpenCV1、下载OpenCV2、安装OpenCV二、配置环境1、…

容器的老祖宗LXC和Docker的关系

一、什么是LXC&#xff1f; LXC&#xff08;Linux Container的缩写&#xff09;是一个基于Linux内核的容器虚拟化技术&#xff0c;它提供了一种轻量级、快速、简便的方式来创建和管理系统容器。与传统虚拟化技术不同&#xff0c;LXC并不会模拟硬件&#xff0c;而是利用Linux内…