文章目录
- 一、LSTM简介
- 二、LSTM中的核心结构
- 三、如何解决RNN中的梯度消失/爆炸问题
- 四、情感分类实战(google colab)
一、LSTM简介
LSTM(long short-term memory)长短期记忆网络,RNN的改进,克服了RNN中“记忆低下”的问题。通过“门”结构实现信息的添加和移除,通过记忆元将序列处理过程中的相关信息一直传递下去,经典结构如下:
二、LSTM中的核心结构
记忆元(memory cell)-长期记忆:
就像一个cell一样,信息通过这条只有少量线性交互的线传递。传递过程中有3种“门”结构可以告诉它该学习或者保存哪些信息
三个门结构-短期记忆
遗忘门:用来决定当前状态哪些信息被移除
输入门:决定放入哪些信息到细胞状态
输出门:决定哪些信息用于输出
细节注意:
- 新的细胞状态只需要遗忘门和输入门就可以更新,公式为:Ct=ft∗Ct−1+it∗Ct~C_t=f_t*C_{t-1}+i_t* \tilde{C_t}Ct=ft∗Ct−1+it∗Ct~(注意所有的∗*∗都表示Hadamard 乘积)
- 只有隐状态h_t会传递到输出层,记忆元完全属于内部信息,不可手动修改
三、如何解决RNN中的梯度消失/爆炸问题
解决是指很大程度上缓解,不是让它彻底消失。先解释RNN为什么会有这些问题:
∂Lt∂U=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂U∂Lt∂W=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂W\begin{aligned} &\frac{\partial L_t}{\partial U}= \sum_{k=0}^{t}\frac{\partial L_t}{\partial O_t}\frac{\partial O_t}{\partial S_t}(\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}})\frac{\partial S_k}{\partial U}\\&\frac{\partial L_t}{\partial W}= \sum_{k=0}^{t}\frac{\partial L_t}{\partial O_t}\frac{\partial O_t}{\partial S_t}(\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}})\frac{\partial S_k}{\partial W} \end{aligned} ∂U∂Lt=k=0∑t∂Ot∂Lt∂St∂Ot(j=k+1∏t∂Sj−1∂Sj)∂U∂Sk∂W∂Lt=k=0∑t∂Ot∂Lt∂St∂Ot(j=k+1∏t∂Sj−1∂Sj)∂W∂Sk(具体过程可以看这里)
上面是训练过程任意时刻更新W、U需要用到的求偏导的结果。实际使用会加上激活函数,通常为tanh、sigmoid等
tanh和其导数图像如下
sigmoid和其导数如下
这些激活函数的导数都比1要小,又因为∏j=k+1t∂Sj∂Sj−1=∏j=k+1ttanh′(Ws)\prod_{j=k+1}^{t}\frac{\partial S_j}{\partial S_{j-1}}=\prod_{j=k+1}^{t}tanh'(W_s)∏j=k+1t∂Sj−1∂Sj=∏j=k+1ttanh′(Ws),所以当WsW_sWs过小过大就会分别造成梯度消失和爆炸的问题,特别是过小。
LSTM如何缓解
由链式法则和三个门的公式可以得到:
∂Ct∂Ct−1=∂Ct∂ft∂ft∂ht−1∂ht−1∂Ct−1+∂Ct∂it∂it∂ht−1∂ht−1∂Ct−1+∂Ct∂Ct~∂Ct~∂ht−1∂ht−1∂Ct−1+∂Ct∂Ct−1=Ct−1σ′(⋅)Wf∗ot−1tanh′(Ct−1)+Ct~σ′(⋅)Wi∗ot−1tanh′(Ct−1)+ittanh′(⋅)Wc∗ot−1tanh′(Ct−1)+ft\begin{aligned} &\frac{\partial C_t}{\partial C_{t-1}}\\&=\frac{\partial C_t}{\partial f_t}\frac{\partial f_t}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial i_t}\frac{\partial i_t}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial \tilde{C_t}}\frac{\partial \tilde{C_t}}{\partial h_{t-1}}\frac{\partial h_{t-1}}{\partial C_{t-1}}+\frac{\partial C_t}{\partial C_{t-1}}\\ &=C_{t-1}\sigma '(\cdot)W_f*o_{t-1}tanh'(C_{t-1})+\tilde{C_t}\sigma '(\cdot)W_i*o_{t-1}tanh'(C_{t-1})\\&+i_ttanh'(\cdot)W_c*o_{t-1}tanh'(C_{t-1})+f_t \end{aligned}∂Ct−1∂Ct=∂ft∂Ct∂ht−1∂ft∂Ct−1∂ht−1+∂it∂Ct∂ht−1∂it∂Ct−1∂ht−1+∂Ct~∂Ct∂ht−1∂Ct~∂Ct−1∂ht−1+∂Ct−1∂Ct=Ct−1σ′(⋅)Wf∗ot−1tanh′(Ct−1)+Ct~σ′(⋅)Wi∗ot−1tanh′(Ct−1)+ittanh′(⋅)Wc∗ot−1tanh′(Ct−1)+ft
- 由相乘变成了相加,不容易叠加
- sigmoid函数使单元间传递结果非常接近0或者1,使模型变成非线性,并且可以在学习过程中内部调整
四、情感分类实战(google colab)
环境和库:
!pip install torch
!pip install torchtext
!python -m spacy download en# K80 gpu for 12 hours
import torch
from torch import nn, optim
from torchtext import data, datasetsprint('GPU:', torch.cuda.is_available())torch.manual_seed(123)
加载数据集:
TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)print(train_data.examples[15].text)
print(train_data.examples[15].label)
网络结构:
class RNN(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim):""""""super(RNN, self).__init__()# [0-10001] => [100]self.embedding = nn.Embedding(vocab_size, embedding_dim)# [100] => [256]self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, bidirectional=True, dropout=0.5)# [256*2] => [1]self.fc = nn.Linear(hidden_dim*2, 1)self.dropout = nn.Dropout(0.5)def forward(self, x):"""x: [seq_len, b] vs [b, 3, 28, 28]"""# [seq, b, 1] => [seq, b, 100]embedding = self.dropout(self.embedding(x))# output: [seq, b, hid_dim*2]# hidden/h: [num_layers*2, b, hid_dim]# cell/c: [num_layers*2, b, hid_di]output, (hidden, cell) = self.rnn(embedding)# [num_layers*2, b, hid_dim] => 2 of [b, hid_dim] => [b, hid_dim*2]hidden = torch.cat([hidden[-2], hidden[-1]], dim=1)# [b, hid_dim*2] => [b, 1]hidden = self.dropout(hidden)out = self.fc(hidden)return out
Embedding
rnn = RNN(len(TEXT.vocab), 100, 256)pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape)
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')optimizer = optim.Adam(rnn.parameters(), lr=1e-3)
criteon = nn.BCEWithLogitsLoss().to(device)
rnn.to(device)
训练并测试
import numpy as npdef binary_acc(preds, y):"""get accuracy"""preds = torch.round(torch.sigmoid(preds))correct = torch.eq(preds, y).float()acc = correct.sum() / len(correct)return accdef train(rnn, iterator, optimizer, criteon):avg_acc = []rnn.train()for i, batch in enumerate(iterator):# [seq, b] => [b, 1] => [b]pred = rnn(batch.text).squeeze(1)# loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)optimizer.zero_grad()loss.backward()optimizer.step()if i%10 == 0:print(i, acc)avg_acc = np.array(avg_acc).mean()print('avg acc:', avg_acc)def eval(rnn, iterator, criteon):avg_acc = []rnn.eval()with torch.no_grad():for batch in iterator:# [b, 1] => [b]pred = rnn(batch.text).squeeze(1)#loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)avg_acc = np.array(avg_acc).mean()print('>>test:', avg_acc)for epoch in range(10):eval(rnn, test_iterator, criteon)train(rnn, train_iterator, optimizer, criteon)
最后得到的准确率结果如下:
完整colab链接:lstm
完整代码:
# -*- coding: utf-8 -*-
"""lstmAutomatically generated by Colaboratory.Original file is located athttps://colab.research.google.com/drive/1GX0Rqur8T45MSYhLU9MYWAbycfLH4-Fu
"""!pip install torch
!pip install torchtext
!python -m spacy download en# K80 gpu for 12 hours
import torch
from torch import nn, optim
from torchtext import data, datasetsprint('GPU:', torch.cuda.is_available())torch.manual_seed(123)TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)print('len of train data:', len(train_data))
print('len of test data:', len(test_data))print(train_data.examples[15].text)
print(train_data.examples[15].label)# word2vec, glove
TEXT.build_vocab(train_data, max_size=10000, vectors='glove.6B.100d')
LABEL.build_vocab(train_data)batchsz = 30
device = torch.device('cuda')
train_iterator, test_iterator = data.BucketIterator.splits((train_data, test_data),batch_size = batchsz,device=device
)class RNN(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim):""""""super(RNN, self).__init__()# [0-10001] => [100]self.embedding = nn.Embedding(vocab_size, embedding_dim)# [100] => [256]self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, bidirectional=True, dropout=0.5)# [256*2] => [1]self.fc = nn.Linear(hidden_dim*2, 1)self.dropout = nn.Dropout(0.5)def forward(self, x):"""x: [seq_len, b] vs [b, 3, 28, 28]"""# [seq, b, 1] => [seq, b, 100]embedding = self.dropout(self.embedding(x))# output: [seq, b, hid_dim*2]# hidden/h: [num_layers*2, b, hid_dim]# cell/c: [num_layers*2, b, hid_di]output, (hidden, cell) = self.rnn(embedding)# [num_layers*2, b, hid_dim] => 2 of [b, hid_dim] => [b, hid_dim*2]hidden = torch.cat([hidden[-2], hidden[-1]], dim=1)# [b, hid_dim*2] => [b, 1]hidden = self.dropout(hidden)out = self.fc(hidden)return outrnn = RNN(len(TEXT.vocab), 100, 256)pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape)
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')optimizer = optim.Adam(rnn.parameters(), lr=1e-3)
criteon = nn.BCEWithLogitsLoss().to(device)
rnn.to(device)import numpy as npdef binary_acc(preds, y):"""get accuracy"""preds = torch.round(torch.sigmoid(preds))correct = torch.eq(preds, y).float()acc = correct.sum() / len(correct)return accdef train(rnn, iterator, optimizer, criteon):avg_acc = []rnn.train()for i, batch in enumerate(iterator):# [seq, b] => [b, 1] => [b]pred = rnn(batch.text).squeeze(1)# loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)optimizer.zero_grad()loss.backward()optimizer.step()if i%10 == 0:print(i, acc)avg_acc = np.array(avg_acc).mean()print('avg acc:', avg_acc)def eval(rnn, iterator, criteon):avg_acc = []rnn.eval()with torch.no_grad():for batch in iterator:# [b, 1] => [b]pred = rnn(batch.text).squeeze(1)#loss = criteon(pred, batch.label)acc = binary_acc(pred, batch.label).item()avg_acc.append(acc)avg_acc = np.array(avg_acc).mean()print('>>test:', avg_acc)for epoch in range(10):eval(rnn, test_iterator, criteon)train(rnn, train_iterator, optimizer, criteon)