混合图像python旗舰版

news/2024/10/30 23:16:03/

仔细看这个图像。然后后退几米再看。你看到了什么?

混合图像是指将一张图片的低频与另一张图片的高频相结合的图片。根据观看距离的不同,所得到的图像有两种解释。在上面的图片中,你可以看到阿尔伯特·爱因斯坦,一旦你离开屏幕或缩小观众的图像大小,他就变成了玛丽莲·梦露。这个概念是在2006年的论文中提出的。为了实现这一效果,您必须实现低通和高通滤波操作来应用于您选择的两幅图像,并线性组合过滤后的图像,得到具有所需的两种解释的混合图像,即最后将只有低频信息的图片和只有高频信息的图像叠加在一起。

对于图像的低频部分:可以理解为图像的“轮廓”,比如一幅画的线条等。

对于图像的高频部分:可以理解为图像的“细节”,比如一幅画的颜色搭配,颜色深度等。

值得一提的是:对图像做模糊处理后得到了图像的低频部分,对图像做锐化处理会让图像的高频信息更多。

实现过滤功能

步骤

您的目标是在hybrid.py中实现以下函数:

  1. cross_correlation_2d:实现了你的过滤功能的核心;

  1. convolve_2d:必须使用cross_correlation_2d功能;

  1. gaussian_blur_kernel_2d:你在这里创建的高斯核,与convolve_2d配对,创建一个高斯模糊滤波器;

  1. low_pass:从图像中删除细节,你的实现必须使用高斯模糊;

  1. high_pass:保留很细的细节和删除低频,您的实现必须使用高斯模糊作为一个子例程。

注意,您必须从头开始实现所有的函数,只使用基本的矩阵操作,而任何来自NumPy、OpenCV、Scipy或类似包的任何过滤函数都是禁止的。功能,如填充,创建网格网格,等。被认为是基本的操作,如果您想快速编写代码并避免多个嵌套的Python循环,则是允许的。

生成混合图像

一旦在hybrid.py中实现了函数,使用提供的创建混合图像。然而,创建一个被我们的大脑很好地解释的混合图像的一个重要因素是对齐两个图像的显著特征。注意:如果您使用多个嵌套的Python循环来实现过滤操作,那么您的函数可能会非常慢。在更改参数后,您必须保持耐心,或者使用基本的矩阵功能来更加努力地优化代码。

最终,你应该得到一张像下面这样的图片:

import cv2
import numpy as npdef cross_correlation_2d(img, kernel):'''Given a kernel of arbitrary m x n dimensions, with both m and n beingodd, compute the cross correlation of the given image with the givenkernel, such that the output is of the same dimensions as the image and thatyou assume the pixels out of the bounds of the image to be zero. Note thatyou need to apply the kernel to each channel separately, if the given imageis an RGB image.Inputs:img:    Either an RGB image (height x width x 3) or a grayscale image(height x width) as a numpy array.kernel: A 2D numpy array (m x n), with m and n both odd (but may not beequal).Output:Return an image of the same dimensions as the input image (same width,height and the number of color channels)'''# TODO-BLOCK-BEGIN# rotating kernel with 180 degreeskernel = np.rot90(kernel, 2)kernel_heigh = int(np.array(kernel).shape[0])kernel_width = int(np.array(kernel).shape[1])# set kernel matrix to random int matrixif ((kernel_heigh % 2 != 0) & (kernel_width % 2 != 0)):  # make sure that the scale of kernel is odd# the scale of resultconv_heigh = img.shape[0] - kernel.shape[0] + 1conv_width = img.shape[1] - kernel.shape[1] + 1conv = np.zeros((conv_heigh, conv_width))# convolvefor i in range(int(conv_heigh)):for j in range(int(conv_width )):result = (img[i:i + kernel_heigh, j:j + kernel_width] * kernel).sum()if(result<0):result = 0elif(result>255):result = 255conv[i][j] = resultreturn convelse: raise Exception('make sure that the scale of kernel is odd')# raise Exception("TODO in hybrid.py not implemented")# TODO-BLOCK-ENDdef convolve_2d(img, kernel):'''Use cross_correlation_2d() to carry out a 2D convolution.Inputs:img:    Either an RGB image (height x width x 3) or a grayscale image(height x width) as a numpy array.kernel: A 2D numpy array (m x n), with m and n both odd (but may not beequal).Output:Return an image of the same dimensions as the input image (same width,height and the number of color channels)'''# TODO-BLOCK-BEGIN# zero paddingkernel_half_row = int((kernel.shape[0]-1)/2)kernel_half_col = int((kernel.shape[1]-1)/2)# judge how many channelsif len(img.shape) == 3:img = np.pad(img, ((kernel_half_row, kernel_half_row), (kernel_half_col, kernel_half_col),(0, 0)), 'constant', constant_values=0)# if image.shape[2] == 3 or image.shape[2] == 4:# if style is png, there will be four channels, but we just need to use the first three# if the style is bmp or jpg, there will be three channelsimage_r = img[:, :, 0]image_g = img[:, :, 1]image_b = img[:, :, 2]result_r = cross_correlation_2d(image_r, kernel)result_g = cross_correlation_2d(image_g, kernel)result_b = cross_correlation_2d(image_b, kernel)result_picture = np.dstack([result_r, result_g, result_b])# if the picture is black and whiteelif len(img.shape) == 2:img = np.pad(img, ((kernel_half_row, kernel_half_row), (kernel_half_col, kernel_half_col)), 'constant', constant_values=0)result_picture = cross_correlation_2d(img, kernel)# returns the convolved image (of the same shape as the input image)return result_picture# raise Exception("TODO in hybrid.py not implemented")# TODO-BLOCK-ENDdef gaussian_blur_kernel_2d(sigma, height, width):'''Return a Gaussian blur kernel of the given dimensions and with the givensigma. Note that width and height are different.Input:sigma:  The parameter that controls the radius of the Gaussian blur.Note that, in our case, it is a circular Gaussian (symmetricacross height and width).width:  The width of the kernel.height: The height of the kernel.Output:Return a kernel of dimensions height x width such that convolving itwith an image results in a Gaussian-blurred image.'''# TODO-BLOCK-BEGINm,n = [(ss-1.)/2. for ss in (height, width)]y, x = np.ogrid[-m:m+1, -n:n+1]h = np.exp( - (x*x + y*y) / (2.*sigma*sigma))h[ h < np.finfo(h.dtype).eps*h.max()] = 0sumh = h.sum()if sumh != 0:h /= sumhreturn h# raise Exception("TODO in hybrid.py not implemented")# TODO-BLOCK-ENDdef low_pass(img, sigma, size):'''Filter the image as if its filtered with a low pass filter of the givensigma and a square kernel of the given size. A low pass filter supressesthe higher frequency components (finer details) of the image.Output:Return an image of the same dimensions as the input image (same width,height and the number of color channels)'''# TODO-BLOCK-BEGIN# make kernellow_kernel = gaussian_blur_kernel_2d(sigma, size, size)# convolve low-pass pictureslow_image = convolve_2d(img, low_kernel)return low_image# raise Exception("TODO in hybrid.py not implemented")# TODO-BLOCK-ENDdef high_pass(img, sigma, size):'''Filter the image as if its filtered with a high pass filter of the givensigma and a square kernel of the given size. A high pass filter suppressesthe lower frequency components (coarse details) of the image.Output:Return an image of the same dimensions as the input image (same width,height and the number of color channels)'''# TODO-BLOCK-BEGIN# make kernelhigh_kernel = gaussian_blur_kernel_2d(sigma, size, size)# make high-pass picturehigh_image = (img - convolve_2d(img, high_kernel))return high_image# raise Exception("TODO in hybrid.py not implemented")# TODO-BLOCK-ENDdef create_hybrid_image(img1, img2, sigma1, size1, high_low1, sigma2, size2,high_low2, mixin_ratio, scale_factor):'''This function adds two images to create a hybrid image, based onparameters specified by the user.'''high_low1 = high_low1.lower()high_low2 = high_low2.lower()if img1.dtype == np.uint8:img1 = img1.astype(np.float32) / 255.0img2 = img2.astype(np.float32) / 255.0if high_low1 == 'low':img1 = low_pass(img1, sigma1, size1)else:img1 = high_pass(img1, sigma1, size1)if high_low2 == 'low':img2 = low_pass(img2, sigma2, size2)else:img2 = high_pass(img2, sigma2, size2)img1 *=  (1 - mixin_ratio)img2 *= mixin_ratiocv2.imshow('img1', img1)cv2.imshow('img2', img2)cv2.imwrite('high_left.png', img1)cv2.imwrite('low_right.png', img2)hybrid_img = (img1 + img2) * scale_factorreturn (hybrid_img * 255).clip(0, 255).astype(np.uint8)if __name__ == "__main__":hybrid_image = create_hybrid_image(img1=cv2.imread(r'resources\cat.jpg'),img2=cv2.imread(r'resources\dog.jpg'),sigma1=7,size1=29,high_low1='high',sigma2=7.0,size2=29,high_low2='low',mixin_ratio=0.5,scale_factor=1)cv2.imshow('hybrid_image', hybrid_image)cv2.waitKey(0)cv2.imwrite('hybrid_image.png', hybrid_image)


http://www.ppmy.cn/news/29837.html

相关文章

22. linux系统基础

递归遍历指定文件下所有的文件&#xff0c;而且你还可以统计一下普通文件的总个数&#xff0c;既然能统计普通文件&#xff0c;能统计其他文件吗&#xff1f;比如目录文件&#xff0c; 这个是main函数里面我们调用了 &#xff0c;这个checkdird这个函数&#xff0c;需要传递一个…

操作系统(1.1)--引论

目录 一、操作系统的目标和作用 1.操作系统的目标 2.操作系统的作用 2.1 OS作为用户与计算机硬件系统之间的接口 2.2 OS作为计算机系统资源的管理者 2.3 0S实现了对计算机资源的抽象 3. 推动操作系统发展的主要动力 二、操作系统的发展过程 1.无操作系统的计算机系统…

笔记--学习mini3d代码

主要是记录学习mini3d代码时&#xff0c;查的资料&#xff1b; 从github下载的代码&#xff1a; GitHub - skywind3000/mini3d: 3D Software Renderer in 700 Lines !!3D Software Renderer in 700 Lines !! Contribute to skywind3000/mini3d development by creating an a…

etcd集群通过 Leader 写入数据,为什么K8s HA集群中讲每个 kube-apiserver 只和本机的 ETCD 通信

写在前面 对这个我不太明白&#xff0c;所有在 stackOverflow 的请教了大佬这里分享给小伙伴理解不足小伙伴帮忙指正 对每个人而言&#xff0c;真正的职责只有一个&#xff1a;找到自我。然后在心中坚守其一生&#xff0c;全心全意&#xff0c;永不停息。所有其它的路都是不完整…

Servlet详细教程

文章目录Servletservlet 简介Servlet 入门案例页面编写页面提交 get 请求Servlet 和 Tomcat 关系servlet-apiget 和 post 请求Servlet 生命周期案例HttpServletRequest 接口简介文件上传FileServlet 类Servlet servlet 简介 servlet 全称为 server applet 是服务器的小程序&am…

systemV共享内存

systemV共享内存 共享内存区是最快的IPC形式。共享内存的大小一般是4KB的整数倍&#xff0c;因为系统分配共享内存是以4KB为单位的&#xff08;Page&#xff09;&#xff01;4KB也是划分内存块的基本单位。 之前学的管道&#xff0c;是通过文件系统来实现让不同的进程看到同一…

详解JAVA字节码

目录 1.概述 2.字节码文件构成 2.1.魔数 2.2.版本号 2.3.常量池 2.4.访问标志 2.5.索引 2.6.字段表 2.7.方法表 3.字节码指令 3.1.概述 3.2.指令分类 3.2.1.加载存储指令 3.2.2.运算指令 3.2.3.其他指令 3.3.完整指令工作流程 4.字节码保护 1.概述 以往的编程…

Ubuntu中安装StaMPS

Ubuntu中安装StaMPS0 StaMPS简介1 首先安装好MATLAB&#xff0c;安装一些依赖工具包2 安装StaMPS2.1 下载StaMPS安装包2.2 安装2.3 配置环境2.4 matlab中的路径设置0 StaMPS简介 官网&#xff1a;https://homepages.see.leeds.ac.uk/~earahoo/stamps/ A software package to e…