文章目录
- 12 VI——变分推断
- 12.1 背景介绍
- 12.2 Classical VI
- 12.2.1 公式导出
- 12.2.2 坐标上升法
- 12.3 SGVI——随机梯度变分推断
- 12.3.1 一般化MC方法
- 12.3.2 降方差——Variance Reduction
12 VI——变分推断
12.1 背景介绍
变分推断的作用就是在概率图模型中进行参数估计,是参数估计的一种确定性近似的方法。下图给出了VI在机器学习中的地位:
12.2 Classical VI
12.2.1 公式导出
首先第一个问题,变分推断中的变分是什么?我们曾在EM算法的公式导出中得到过这样一个公式:
log P ( X ) = ( ∫ Z q ( Z ) log P ( X , Z ) q ( Z ) d Z ) + ( − ∫ Z q ( Z ) log P ( Z ∣ X ) q ( Z ) d Z ) \log P(X) = \left( \int_Z q(Z) \log \frac{P(X, Z)}{q(Z)} {\rm d}Z \right) + \left( -\int_Z q(Z) \log \frac{P(Z|X)}{q(Z)} {\rm d}Z \right) logP(X)=(∫Zq(Z)logq(Z)P(X,Z)dZ)+(−∫Zq(Z)logq(Z)P(Z∣X)dZ)
其中前半部分被叫做ELBO(Evidence Lower Bound),后半部分是KL公式,所以可以简化写成:
log P ( X ) = L ( q ) + K L ( q ∣ ∣ p ) , L ( q ) = E L B O \log P(X) = {\mathcal L}(q) + KL(q||p), \quad {\mathcal L}(q) = ELBO logP(X)=L(q)+KL(q∣∣p),L(q)=ELBO
其中的ELBO也就是EM算法中的变分。
变分推断的一个具体作用就是在EM算法中,通过近似推断求解出 q ( z ) q(z) q(z)的分布。
若要使变分最大,自然是: q ^ = a r g max L ( q ) ⟹ q ^ ≈ P ( Z ∣ X ) {\hat q} = arg\max {\mathcal L}(q) \implies {\hat q} \approx P(Z|X) q^=argmaxL(q)⟹q^≈P(Z∣X),但在EM算法章节中我们也说了,由于 q ^ = P ( Z ∣ X ) {\hat q} = P(Z|X) q^=P(Z∣X)实际上大多情况都难以求解,所以需要通过别的办法实现。
而变分推断使用了Mean Theory: q ( Z ) = ∏ i = 1 M q i ( Z i ) q(Z) = \prod_{i=1}^M q_i(Z_i) q(Z)=∏i=1Mqi(Zi)。其中 M M M表示 q ( Z ) q(Z) q(Z)被切分成了 M M M个维度,其中每个维度表示为 q i ( Z i ) q_i(Z_i) qi(Zi)。这样通过固定 i = 1 , … , j − 1 , j + 1 , … , M i = 1, \dots, j-1, j+1, \dots, M i=1,…,j−1,j+1,…,M的项求出 q j ( Z j ) q_j(Z_j) qj(Zj),由Mean Theory定理的公式就可以求出 q ( Z ) q(Z) q(Z)
所以下面我们来分析变分 L ( q ) {\mathcal L}(q) L(q):
L ( q ) = ∫ Z q ( Z ) log P ( X , Z ) d Z − ∫ Z q ( Z ) log q ( Z ) d Z {\mathcal L}(q) = \int_Z q(Z) \log {P(X, Z)} {\rm d}Z - \int_Z q(Z) \log {q(Z)} {\rm d}Z L(q)=∫Zq(Z)logP(X,Z)dZ−∫Zq(Z)logq(Z)dZ
若我们将Mean Theory代入左式:
-
可得公式:
l e f t = ∫ Z ∏ i = 1 M q i ( Z i ) ⋅ log P ( X , Z ) d Z = ∫ Z j q j ( Z j ) ⋅ [ ∫ Z − Z j ∏ i ≠ j M q i ( Z i ) log P ( X , Z ) d Z − Z j ] d Z j = ∫ Z j q j ( Z j ) ⋅ E ∏ i ≠ j M q i ( Z i ) [ log P ( X , Z ) ] d Z j \begin{align} left &= \int_Z \prod_{i=1}^M q_i(Z_i) \cdot \log P(X, Z) {\rm d}_Z \\ &= \int_{Z_j}q_j(Z_j) \cdot \left[ \int_{Z - Z_j} \prod_{i \neq j}^M q_i(Z_i) \log P(X, Z) {\rm d}_{Z-Z_j} \right] {\rm d}_{Z_j} \\ &= \int_{Z_j}q_j(Z_j) \cdot E_{\prod_{i \neq j}^M q_i(Z_i)} \left[ \log P(X, Z) \right] {\rm d}_{Z_j} \\ \end{align} left=∫Zi=1∏Mqi(Zi)⋅logP(X,Z)dZ=∫Zjqj(Zj)⋅ ∫Z−Zji=j∏Mqi(Zi)logP(X,Z)dZ−Zj dZj=∫Zjqj(Zj)⋅E∏i=jMqi(Zi)[logP(X,Z)]dZj -
此时我们强行将 E ∏ i ≠ j M q i ( Z i ) [ log P ( X , Z ) ] E_{\prod_{i \neq j}^M q_i(Z_i)} \left[ \log P(X, Z) \right] E∏i=jMqi(Zi)[logP(X,Z)]定义为 log P ^ ( X , Z j ) \log {\hat P}(X, Z_j) logP^(X,Zj),就能得到:
l e f t = ∫ Z j q j ( Z j ) ⋅ log P ^ ( X , Z j ) d Z j \begin{align} left = \int_{Z_j}q_j(Z_j) \cdot \log {\hat P}(X, Z_j) {\rm d}_{Z_j} \\ \end{align} left=∫Zjqj(Zj)⋅logP^(X,Zj)dZj
若将Mean Theory代入右式:
-
可得公式:
r i g h t = ∫ Z ∏ i = 1 M q i ( Z i ) ⋅ ∑ k = 1 M log q k ( Z k ) d Z = ∫ Z ∏ i = 1 M q i ( Z i ) ⋅ [ log q 1 ( Z 1 ) + log q 2 ( Z 2 ) + ⋯ + log q M ( Z M ) ] d Z \begin{align} right &= \int_Z \prod_{i=1}^M q_i(Z_i) \cdot \sum_{k=1}^M \log q_k(Z_k) {\rm d}_Z \\ &= \int_Z \prod_{i=1}^M q_i(Z_i) \cdot [ \log q_1(Z_1) + \log q_2(Z_2) + \dots + \log q_M(Z_M) ] {\rm d}_Z \\ \end{align} right=∫Zi=1∏Mqi(Zi)⋅k=1∑Mlogqk(Zk)dZ=∫Zi=1∏Mqi(Zi)⋅[logq1(Z1)+logq2(Z2)+⋯+logqM(ZM)]dZ -
其中出了第 j j j项,我们都固定了,可以视为常数。将第 j j j项提出来可以得到:
j − t h = ∫ Z ∏ i = 1 M q i ( Z i ) ⋅ log q j ( Z j ) d Z = ∫ Z 1 q 1 ( Z 1 ) d Z 1 ⋯ ∫ Z j q j ( Z j ) ⋅ log q j ( Z j ) d Z j ⋯ ∫ Z M q M ( Z M ) d Z M = ∫ Z j q j ( Z j ) ⋅ log q j ( Z j ) d Z j \begin{align} j-th &= \int_Z \prod_{i=1}^M q_i(Z_i) \cdot \log q_j(Z_j) {\rm d}_Z \\ &= \int_{Z_1} q_1(Z_1) {\rm d}_{Z_1} \dots \int_{Z_j} q_j(Z_j) \cdot \log q_j(Z_j) {\rm d}_{Z_j} \dots \int_{Z_M} q_M(Z_M) {\rm d}_{Z_M} \\ &= \int_{Z_j} q_j(Z_j) \cdot \log q_j(Z_j) {\rm d}_{Z_j} \end{align} j−th=∫Zi=1∏Mqi(Zi)⋅logqj(Zj)dZ=∫Z1q1(Z1)dZ1⋯∫Zjqj(Zj)⋅logqj(Zj)dZj⋯∫ZMqM(ZM)dZM=∫Zjqj(Zj)⋅logqj(Zj)dZj -
所以可得:
r i g h t = ∫ Z j q j ( Z j ) ⋅ log q j ( Z j ) d Z j + C \begin{align} right = \int_{Z_j} q_j(Z_j) \cdot \log q_j(Z_j) {\rm d}_{Z_j} + C \end{align} right=∫Zjqj(Zj)⋅logqj(Zj)dZj+C
综合一下上述的公式可得:
L ( q ) = l e f t − r i g h t = ∫ Z j q j ( Z j ) ⋅ log P ^ ( X , Z j ) d Z j − ∫ Z j q j ( Z j ) ⋅ log q j ( Z j ) d Z j − C = ∫ Z j q j ( Z j ) ⋅ log P ^ ( X , Z j ) q j ( Z j ) d Z j − C = − K L ( P ^ ( X , Z j ) ∥ q j ( Z j ) ) d Z j − C \begin{align} {\mathcal L}(q) &= left - right \\ &= \int_{Z_j}q_j(Z_j) \cdot \log {\hat P}(X, Z_j) {\rm d}_{Z_j} - \int_{Z_j} q_j(Z_j) \cdot \log q_j(Z_j) {\rm d}_{Z_j} - C \\ &= \int_{Z_j}q_j(Z_j) \cdot \log \frac{{\hat P}(X, Z_j)}{q_j(Z_j)} {\rm d}_{Z_j} - C \\ &= -KL({{\hat P}(X, Z_j)} \Vert {q_j(Z_j)}) {\rm d}_{Z_j} - C \\ \end{align} L(q)=left−right=∫Zjqj(Zj)⋅logP^(X,Zj)dZj−∫Zjqj(Zj)⋅logqj(Zj)dZj−C=∫Zjqj(Zj)⋅logqj(Zj)P^(X,Zj)dZj−C=−KL(P^(X,Zj)∥qj(Zj))dZj−C
若要得到最大的$ {\mathcal L}(q) $,可得:
{ q j ( Z j ) = P ^ ( X , Z j ) log P ^ ( X , Z j ) = E ∏ i ≠ j M q i ( Z i ) [ log P ( X , Z ) ] \begin{cases} {q_j(Z_j)} = {{\hat P}(X, Z_j)} \\ \log {\hat P}(X, Z_j) = E_{\prod_{i \neq j}^M q_i(Z_i)} \left[ \log P(X, Z) \right] \end{cases} {qj(Zj)=P^(X,Zj)logP^(X,Zj)=E∏i=jMqi(Zi)[logP(X,Z)]
12.2.2 坐标上升法
至此,我们已经得到了 q j ( Z j ) q_j(Z_j) qj(Zj)的求解公式,接下来我们只要能求出 q 1 ( Z 1 ) , … , q M ( Z M ) q_1(Z_1), \dots, q_M(Z_M) q1(Z1),…,qM(ZM),就可以通过Mean Theory求解出 q ( Z ) q(Z) q(Z)了。
我们根据上面获得的变分最大条件进行分析:
log q j ( Z j ) = E ∏ i ≠ j M q i ( Z i ) [ log P ( X , Z ) ] \log {q_j(Z_j)} = E_{\prod_{i \neq j}^M q_i(Z_i)} \left[ \log P(X, Z) \right] logqj(Zj)=E∏i=jMqi(Zi)[logP(X,Z)]
我们将这个条件展开可以得到:
log q j ( Z j ) = ∫ q 1 ⋯ ∫ q j − 1 ∫ q j + 1 ⋯ ∫ q M q 1 , … , q j − 1 , q j + 1 , … , q M ⋅ log P ( X , Z ) d q 1 … d q j − 1 d q j + 1 … d q M \log {q_j(Z_j)} = \int_{q_1} \dots \int_{q_{j-1}} \int_{q_{j+1}} \dots \int_{q_M} q_1, \dots, q_{j-1}, q_{j+1}, \dots, q_M \cdot \log P(X, Z) {\rm d}{q_1} \dots {\rm d}{q_{j-1}} {\rm d}{q_{j+1}} \dots {\rm d}{q_M} logqj(Zj)=∫q1⋯∫qj−1∫qj+1⋯∫qMq1,…,qj−1,qj+1,…,qM⋅logP(X,Z)dq1…dqj−1dqj+1…dqM
已知该公式,我们可以采用坐标上升法迭代求解 q 1 ( Z 1 ) , … , q M ( Z M ) {q_1(Z_1)}, \dots, {q_M(Z_M)} q1(Z1),…,qM(ZM):
{ log q 1 ^ ( Z 1 ) = ∫ q 2 ⋯ ∫ q M q 2 , … , q M ⋅ log P ( X , Z ) d q 2 … d q M log q 2 ^ ( Z 2 ) = ∫ q 1 ^ ∫ q 3 ⋯ ∫ q M q 1 ^ , q 3 , … , q M ⋅ log P ( X , Z ) d q 1 ^ d q 3 … d q M … log q M ^ ( Z M ) = ∫ q 1 ^ ⋯ ∫ q M − 1 ^ q 1 ^ , … , q M − 1 ^ ⋅ log P ( X , Z ) d q 1 ^ … d q M − 1 ^ \begin{cases} \log {\hat {q_1}(Z_1)} = \int_{q_2} \dots \int_{q_M} q_2, \dots, q_M \cdot \log P(X, Z) {\rm d}{q_2} \dots {\rm d}{q_M} \\ \log {\hat {q_2}(Z_2)} = \int_{\hat {q_1}} \int_{q_3} \dots \int_{q_M} {\hat {q_1}}, q_3, \dots, q_M \cdot \log P(X, Z) {\rm d}{\hat {q_1}} {\rm d}{q_3} \dots {\rm d}{q_M} \\ \dots \\ \log {\hat {q_M}(Z_M)} = \int_{\hat {q_1}} \dots \int_{\hat {q_{M-1}}} {\hat {q_1}}, \dots, {\hat {q_{M-1}}} \cdot \log P(X, Z) {\rm d}{\hat {q_1}} \dots {\rm d}{\hat {q_{M-1}}} \\ \end{cases} ⎩ ⎨ ⎧logq1^(Z1)=∫q2⋯∫qMq2,…,qM⋅logP(X,Z)dq2…dqMlogq2^(Z2)=∫q1^∫q3⋯∫qMq1^,q3,…,qM⋅logP(X,Z)dq1^dq3…dqM…logqM^(ZM)=∫q1^⋯∫qM−1^q1^,…,qM−1^⋅logP(X,Z)dq1^…dqM−1^
并且可以通过循环多次的迭代增加精度。
但Classical VI有缺点:
- Mean Fied的条件太强,很多模型不满足
- 若维度太高,会变成高维积分导致无法求解
12.3 SGVI——随机梯度变分推断
12.3.1 一般化MC方法
倘若我们使用 φ \varphi φ表示 q ( Z ) q(Z) q(Z)的参数,同时下文普遍将 q ( Z ) q(Z) q(Z)缩写为 q φ q_\varphi qφ,所以我们可以将公式写为(ELBO对于 P θ ( X , Z ) P_\theta(X, Z) Pθ(X,Z)和 P θ ( x i , Z ) P_\theta(x_i, Z) Pθ(xi,Z)都成立):
L ( φ ) = E L B O = E q φ [ log P θ ( x i , Z ) q φ ] = E q φ [ log P θ ( x i , Z ) − log q φ ] {\mathcal L}(\varphi) = ELBO = E_{q_\varphi } \left[ \log \frac{P_\theta(x_i, Z)}{q_\varphi} \right] = E_{q_\varphi } \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] L(φ)=ELBO=Eqφ[logqφPθ(xi,Z)]=Eqφ[logPθ(xi,Z)−logqφ]
我们当前的目标是求解 φ ^ = a r g max φ L ( φ ) {\hat \varphi} = arg\max_\varphi {\mathcal L}(\varphi) φ^=argmaxφL(φ),为了求解,我们打算采用梯度上升法,而要想使用梯度上升法,就必须求解得到梯度方向 ∇ φ L ( φ ) \nabla_\varphi {\mathcal L}(\varphi) ∇φL(φ):
∇ φ L ( φ ) = ∇ φ E q φ [ log P θ ( x i , Z ) − log q φ ] = ∇ φ ∫ Z q φ ⋅ [ log P θ ( x i , Z ) − log q φ ] d Z \nabla_\varphi {\mathcal L}(\varphi) = \nabla_\varphi E_{q_\varphi } \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] = \nabla_\varphi \int_Z q_\varphi \cdot \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] {\rm d}_Z ∇φL(φ)=∇φEqφ[logPθ(xi,Z)−logqφ]=∇φ∫Zqφ⋅[logPθ(xi,Z)−logqφ]dZ
引入梯度变换公式:
∇ x ∫ z A ( x , z ) ⋅ B ( x , z ) d z = ∫ z ∇ x A ( x , z ) ⋅ B ( x , z ) d z + ∫ z A ( x , z ) ⋅ ∇ x B ( x , z ) d z \nabla_x \int_z A(x, z) \cdot B(x, z) {\rm d}z = \int_z \nabla_x A(x, z) \cdot B(x, z) {\rm d}z + \int_z A(x, z) \cdot \nabla_x B(x, z) {\rm d}z ∇x∫zA(x,z)⋅B(x,z)dz=∫z∇xA(x,z)⋅B(x,z)dz+∫zA(x,z)⋅∇xB(x,z)dz
可得:
∇ φ L ( φ ) = ∫ Z ∇ φ q φ ⋅ [ log P θ ( x i , Z ) − log q φ ] d Z + ∫ Z q φ ⋅ ∇ φ [ log P θ ( x i , Z ) − log q φ ] d Z \nabla_\varphi {\mathcal L}(\varphi) = \int_Z \nabla_\varphi q_\varphi \cdot \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] {\rm d}_Z + \int_Z q_\varphi \cdot \nabla_\varphi \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] {\rm d}_Z ∇φL(φ)=∫Z∇φqφ⋅[logPθ(xi,Z)−logqφ]dZ+∫Zqφ⋅∇φ[logPθ(xi,Z)−logqφ]dZ
这里主要看一下右边的公式:
r i g h t = ∫ Z q φ ⋅ ∇ φ [ log P θ ( x i , Z ) − log q φ ] d Z = ∫ Z q φ ⋅ ∇ φ [ − log q φ ] d Z —— log P θ ( x i , Z ) 与 φ 无关 = − ∫ Z ∇ φ q φ d Z —— ∇ φ [ − log q φ ] = − 1 q φ ∇ φ q φ = − ∇ φ ∫ Z q φ d Z = − ∇ φ 1 = 0 \begin{align} right &= \int_Z q_\varphi \cdot \nabla_\varphi \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] {\rm d}_Z \\ &= \int_Z q_\varphi \cdot \nabla_\varphi \left[- \log {q_\varphi} \right] {\rm d}_Z & ——\log {P_\theta(x_i, Z)}与\varphi无关 \\ &= - \int_Z \nabla_\varphi q_\varphi {\rm d}_Z & ——\nabla_\varphi \left[- \log {q_\varphi} \right]=-\frac{1}{q_\varphi}\nabla_\varphi q_\varphi \\ &= - \nabla_\varphi \int_Z q_\varphi {\rm d}_Z \\ &= - \nabla_\varphi 1 \\ &= 0 \end{align} right=∫Zqφ⋅∇φ[logPθ(xi,Z)−logqφ]dZ=∫Zqφ⋅∇φ[−logqφ]dZ=−∫Z∇φqφdZ=−∇φ∫ZqφdZ=−∇φ1=0——logPθ(xi,Z)与φ无关——∇φ[−logqφ]=−qφ1∇φqφ
所以可以将公式继续写为:
∇ φ L ( φ ) = ∫ Z ∇ φ q φ ⋅ [ log P θ ( x i , Z ) − log q φ ] d Z = ∫ Z q φ ∇ φ log q φ ⋅ [ log P θ ( x i , Z ) − log q φ ] d Z —— ∇ φ q φ = q φ ∇ φ log q φ = E q φ [ ∇ φ log q φ ⋅ ( log P θ ( x i , Z ) − log q φ ) ] \begin{align} \nabla_\varphi {\mathcal L}(\varphi) &= \int_Z \nabla_\varphi q_\varphi \cdot \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] {\rm d}_Z \\ &= \int_Z q_\varphi \nabla_\varphi \log{q_\varphi} \cdot \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] {\rm d}_Z & ——\nabla_\varphi q_\varphi = q_\varphi \nabla_\varphi \log{q_\varphi} \\ &= E_{q_\varphi} \left[ \nabla_\varphi \log{q_\varphi} \cdot \left( \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right) \right] \\ \end{align} ∇φL(φ)=∫Z∇φqφ⋅[logPθ(xi,Z)−logqφ]dZ=∫Zqφ∇φlogqφ⋅[logPθ(xi,Z)−logqφ]dZ=Eqφ[∇φlogqφ⋅(logPθ(xi,Z)−logqφ)]——∇φqφ=qφ∇φlogqφ
至此我们已经得到了公式:
∇ φ L ( φ ) = E q φ [ ∇ φ log q φ ⋅ ( log P θ ( x i , Z ) − log q φ ) ] \begin{align} \nabla_\varphi {\mathcal L}(\varphi) = E_{q_\varphi} \left[ \nabla_\varphi \log{q_\varphi} \cdot \left( \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right) \right] \\ \end{align} ∇φL(φ)=Eqφ[∇φlogqφ⋅(logPθ(xi,Z)−logqφ)]
通过该公式,我们就可以通过Monte Carlo方法进行采样估算:
Z ( l ) ∽ q φ ( Z ) , l ∈ [ 1 , L ] ⟹ ∇ φ L ( φ ) ≈ 1 L ∑ l = 1 L [ ∇ φ log q φ ( Z ( l ) ) ⋅ ( log P θ ( x i , Z ( l ) ) − log q φ ( Z ( l ) ) ) ] Z^{(l)} \backsim q_\varphi(Z), l \in [1, L] \implies \nabla_\varphi {\mathcal L}(\varphi) \approx \frac{1}{L} \sum_{l=1}^L \left[ \nabla_\varphi \log{q_\varphi}(Z^{(l)}) \cdot \left( \log {P_\theta(x_i, Z^{(l)})} - \log {q_\varphi}(Z^{(l)}) \right) \right] Z(l)∽qφ(Z),l∈[1,L]⟹∇φL(φ)≈L1l=1∑L[∇φlogqφ(Z(l))⋅(logPθ(xi,Z(l))−logqφ(Z(l)))]
但这个采样方法无法使用,因为 ∇ φ log q φ ( Z ( l ) ) \nabla_\varphi \log{q_\varphi}(Z^{(l)}) ∇φlogqφ(Z(l))在 ( 0 , 1 ) (0, 1) (0,1)的区间内波动太大( log 在 ( 0 , 1 ) \log在(0,1) log在(0,1)中的取值范围太大),导致单次样本解的方差太大。若要解决就要增加采样的数据了,但这又太浪费时间,不满足现实应用。
12.3.2 降方差——Variance Reduction
为了降低方差,这里要用到重新参数化技巧(Reparametrization Trick):通过对随机化参数的重构,降低当前公式的求解方差。
由于当前的参数是 Z ∽ q φ ( Z ∣ x i ) Z \backsim q_\varphi(Z|x_i) Z∽qφ(Z∣xi),为了将参数转换为方差没有那么大的参数,我们假设:
Z ∽ g φ ( ε ∣ x i ) , ε ∽ p ( ε ) Z \backsim g_\varphi(\varepsilon|x_i), \varepsilon \backsim p(\varepsilon) Z∽gφ(ε∣xi),ε∽p(ε)
通过上述方法,将Z随机样本的身份给了 ε \varepsilon ε,这样可以通过创建 ε ( l ) \varepsilon^{(l)} ε(l)求出 Z Z Z,所以现在我们已知新旧的两个分布: { z ∽ q φ ( Z ∣ x i ) ε ∽ p ( ε ) \begin{cases} z \backsim q_\varphi(Z|x_i) \\ \varepsilon \backsim p(\varepsilon) \end{cases} {z∽qφ(Z∣xi)ε∽p(ε),这两个分布是通过 g φ g_\varphi gφ转换,可以得到 ∣ q φ ( Z ∣ x i ) d z ∣ = ∣ p ( ε ) d ε ∣ |q_\varphi(Z|x_i) {\rm d}z| = |p(\varepsilon) {\rm d}\varepsilon| ∣qφ(Z∣xi)dz∣=∣p(ε)dε∣(我也不知道为啥)。
所以我们可以得到以下推导:
∇ φ L ( φ ) = ∇ φ ∫ Z [ log P θ ( x i , Z ) − log q φ ] ⋅ q φ d Z = ∇ φ ∫ Z [ log P θ ( x i , Z ) − log q φ ] ⋅ p ( ε ) d ε = ∇ φ E p ( ε ) [ log P θ ( x i , Z ) − log q φ ] = E p ( ε ) [ ∇ φ ( log P θ ( x i , Z ) − log q φ ) ] —— ∇ φ 与 p ( ε ) 无关 = E p ( ε ) [ ∇ Z ( log P θ ( x i , Z ) − log q φ ) ⋅ ∇ φ g φ ( ε ∣ x i ) ] ——变量转换方法 \begin{align} \nabla_\varphi {\mathcal L}(\varphi) &= \nabla_\varphi \int_Z \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] \cdot q_\varphi {\rm d}_Z \\ &= \nabla_\varphi \int_Z \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] \cdot p(\varepsilon) {\rm d}\varepsilon \\ &= \nabla_\varphi E_{p(\varepsilon)} \left[ \log {P_\theta(x_i, Z)} - \log {q_\varphi} \right] \\ &= E_{p(\varepsilon)} \left[ \nabla_\varphi (\log {P_\theta(x_i, Z)} - \log {q_\varphi}) \right] & ——\nabla_\varphi与p(\varepsilon)无关 \\ &= E_{p(\varepsilon)} \left[ \nabla_Z (\log {P_\theta(x_i, Z)} - \log {q_\varphi}) \cdot \nabla_\varphi g_\varphi(\varepsilon|x_i) \right] & ——变量转换方法 \\ \end{align} ∇φL(φ)=∇φ∫Z[logPθ(xi,Z)−logqφ]⋅qφdZ=∇φ∫Z[logPθ(xi,Z)−logqφ]⋅p(ε)dε=∇φEp(ε)[logPθ(xi,Z)−logqφ]=Ep(ε)[∇φ(logPθ(xi,Z)−logqφ)]=Ep(ε)[∇Z(logPθ(xi,Z)−logqφ)⋅∇φgφ(ε∣xi)]——∇φ与p(ε)无关——变量转换方法
通过以上变换我们得到了新的采样对象:
∇ φ L ( φ ) = E p ( ε ) [ ∇ Z ( log P θ ( x i , Z ) − log q φ ( Z ∣ x i ) ) ⋅ ∇ φ g φ ( ε ∣ x i ) ] \begin{align} \nabla_\varphi {\mathcal L}(\varphi) = E_{p(\varepsilon)} \left[ \nabla_Z (\log {P_\theta(x_i, Z)} - \log {q_\varphi}(Z|x_i)) \cdot \nabla_\varphi g_\varphi(\varepsilon|x_i) \right] \end{align} ∇φL(φ)=Ep(ε)[∇Z(logPθ(xi,Z)−logqφ(Z∣xi))⋅∇φgφ(ε∣xi)]
若通过MC对以下对象进行采样,就不会有问题:
ε ( l ) ∽ p ( ε ) , l ∈ [ 1 , L ] ⟹ ∇ φ L ( φ ) ≈ 1 L ∑ l = 1 L [ ∇ Z ( log P θ ( x i , Z ) − log q φ ( Z ∣ x i ) ) ⋅ ∇ φ g φ ( ε ∣ x i ) ] \varepsilon^{(l)} \backsim p(\varepsilon), l \in [1, L] \implies \nabla_\varphi {\mathcal L}(\varphi) \approx \frac{1}{L} \sum_{l=1}^L \left[ \nabla_Z (\log {P_\theta(x_i, Z)} - \log {q_\varphi}(Z|x_i)) \cdot \nabla_\varphi g_\varphi(\varepsilon|x_i) \right] ε(l)∽p(ε),l∈[1,L]⟹∇φL(φ)≈L1l=1∑L[∇Z(logPθ(xi,Z)−logqφ(Z∣xi))⋅∇φgφ(ε∣xi)]
公式中的 Z Z Z都可以通过 g φ ( ε ∣ x i ) g_\varphi(\varepsilon|x_i) gφ(ε∣xi)求得。
所以SGVI的核心方式还是通过梯度上升的方式进行迭代,但要使用参数重构方法降低计算难度:
φ = φ + S t e p ⋅ ∇ φ L ( φ ) \varphi = \varphi + Step \cdot \nabla_\varphi {\mathcal L}(\varphi) φ=φ+Step⋅∇φL(φ)