大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——shuffle机制

news/2024/11/15 2:14:17/

3.3.1Shuffle机制

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。

Untitled

3.3.2Partition分区

1、问题引出

要求将统计结果按照条件输出到不同文件中(分区)。比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

2、默认Partitioner分区

public int getPartition(K2 key, V2 value,int numReduceTasks) {return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;

默认分区是根据key的hashCode对ReduceTasks个数取模得到的。用户没法控制哪个key存储到哪个分区。

3、自定义Partitioner步骤

(1)自定义类继承Partitioner,重写getPartition()方法

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {@Overridepublic int getPartition(Text key, FlowBean value, int numPartitions) {//控制分区代码逻辑...return partition;}
}

(2)在Job驱动中,设置自定义Partitioner

job.setPartitionerClass(ProvincePartitioner.class);

(3)自定义Parttition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask

// 9 同时指定相应数量的reduce task
job.setNumReduceTasks(5);

4、分区总结

(1)如果ReduceTask的数量>getPartition的结果数,则会多昌盛几个空的输出文件part-r000xx;

(2)如果1<ReduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;

(3)如果ReduceTask的数量=1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个ReduceTask,最终也就只会产生一个结果文件part-r-00000;

(4)分区号必须从零开始,逐一累加。

5、案例分析

例如:假设自定义分区数为5,则

(1)job.setNumReduceTasks(1);会正常运行,只产生一个输出文件

(2)job.setNumReduceTasks(2); 会报错

(3)job.setNumReduceTasks(6); 大于5,程序会正常运行,会产生空文件

3.3.3Partition分区案例实操

1、需求

将统计结果按照手机归属地不同省份输出到不同文件中(分区)

(1)输入数据

1	13736230513	192.196.100.1	www.atguigu.com	2481	24681	200
2	13846544121	192.196.100.2			264	0	200
3 	13956435636	192.196.100.3			132	1512	200
4 	13966251146	192.168.100.1			240	0	404
5 	18271575951	192.168.100.2	www.atguigu.com	1527	2106	200
6 	84188413	192.168.100.3	www.atguigu.com	4116	1432	200
7 	13590439668	192.168.100.4			1116	954	200
8 	15910133277	192.168.100.5	www.hao123.com	3156	2936	200
9 	13729199489	192.168.100.6			240	0	200
10 	13630577991	192.168.100.7	www.shouhu.com	6960	690	200
11 	15043685818	192.168.100.8	www.baidu.com	3659	3538	200
12 	15959002129	192.168.100.9	www.atguigu.com	1938	180	500
13 	13560439638	192.168.100.10			918	4938	200
14 	13470253144	192.168.100.11			180	180	200
15 	13682846555	192.168.100.12	www.qq.com	1938	2910	200
16 	13992314666	192.168.100.13	www.gaga.com	3008	3720	200
17 	13509468723	192.168.100.14	www.qinghua.com	7335	110349	404
18 	18390173782	192.168.100.15	www.sogou.com	9531	2412	200
19 	13975057813	192.168.100.16	www.baidu.com	11058	48243	200
20 	13768778790	192.168.100.17			120	120	200
21 	13568436656	192.168.100.18	www.alibaba.com	2481	24681	200
22 	13568436656	192.168.100.19			1116	954	200

(2)期望输出数据

手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中。

2、需求分析

Untitled

3、在案例2.4的基础上,增加一个分区类

package com.cuiyf41.flowsum;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;public class ProvincePartitioner extends Partitioner<Text, FlowBean> {@Overridepublic int getPartition(Text key, FlowBean value, int numPartitions) {// 1 获取电话号码的前三位String preNum = key.toString().substring(0, 3);int partition = 4;// 2 判断是哪个省if ("136".equals(preNum)){partition = 0;}else if ("137".equals(preNum)){partition = 1;}else if ("138".equals(preNum)){partition = 2;}else if ("139".equals(preNum)){partition = 3;}return partition;}
}

4、在驱动函数中增加自定义数据分区设置和ReduceTask设置

// 8 指定自定义数据分区
job.setPartitionerClass(ProvincePartitioner.class);// 9 同时指定相应数量的reduce task
job.setNumReduceTasks(5);
package com.cuiyf41.flowsum;import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class FlowsumDriver {public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {// 输入输出路径需要根据自己电脑上实际的输入输出路径设置args = new String[] { "e:/input/phone_data.txt", "e:/output" };// 1 获取配置信息,或者job对象实例Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 6 指定本程序的jar包所在的本地路径job.setJarByClass(FlowsumDriver.class);// 2 指定本业务job要使用的mapper/Reducer业务类job.setMapperClass(FlowCountMapper.class);job.setReducerClass(FlowCountReducer.class);// 3 指定mapper输出数据的kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);// 4 指定最终输出的数据的kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);// 5 指定job的输入原始文件所在目录Path input = new Path(args[0]);Path output = new Path(args[1]);// 如果输出路径存在,则进行删除FileSystem fs = FileSystem.get(conf);if (fs.exists(output)) {fs.delete(output,true);}FileInputFormat.setInputPaths(job, input);FileOutputFormat.setOutputPath(job, output);// 8 指定自定义数据分区job.setPartitionerClass(ProvincePartitioner.class);// 9 同时指定相应数量的reduce taskjob.setNumReduceTasks(5);// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

3.3.4WritableComparable排序

1、概述

排序是MapReduce框架中最重要的操作之一。

MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。

默认排序是按照字典顺序排序,且实现该排序的方法是快速排序

对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值时,再对缓冲区中的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。

对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定的阈值,则溢写到磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大的文件;如果内存中文件大小或者数量超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序

2、排序的分类

(1)部分排序

MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序

(2)全排序

最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。

(3)辅助排序(GroupingComparator分组)

在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部比较不相同)的key进入到同一个reduce方法时,可以采用分组排序。

(4)二次排序

在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

3、自定义排序WritableComparable

(1)原理分析

bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序。

@Override
public int compareTo(FlowBean o) {int result;// 按照总流量大小,倒序排列if (sumFlow > bean.getSumFlow()) {result = -1;}else if (sumFlow < bean.getSumFlow()) {result = 1;}else {result = 0;}return result;
}

3.3.5WritableComparable排序案例实操(全排序)

1、需求

根据案例2.3产生的结果再次对总流量进行排序。

(1)输入数据

原始数据 第一次处理后的数据

(2)期望输出数据

13509468723	7335	110349	117684
13736230513	2481	24681	27162
13956435636	132		1512	1644
13846544121	264		0		264
。。。 。。。

2、需求分析

Untitled

3、代码实现

(1)FlowBean对象在在需求1基础上增加了比较功能

package com.cuiyf41.sort;import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class FlowBean implements WritableComparable<FlowBean> {private long upFlow;private long downFlow;private long sumFlow;// 反序列化时,需要反射调用空参构造函数,所以必须有public FlowBean() {super();}public FlowBean(long upFlow, long downFlow) {this.upFlow = upFlow;this.downFlow = downFlow;this.sumFlow = upFlow + downFlow;}/*** 序列化方法* @param out* @throws IOException*/@Overridepublic void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);}/*** 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致* @param in* @throws IOException*/@Overridepublic void readFields(DataInput in) throws IOException {upFlow = in.readLong();downFlow = in.readLong();sumFlow = in.readLong();}@Overridepublic String toString() {return upFlow + "\t" + downFlow + "\t" + sumFlow;}public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}@Overridepublic int compareTo(FlowBean o) {int result;// 按照总流量大小,倒序排列if (this.sumFlow > o.getSumFlow()) {result = -1;}else if (this.sumFlow < o.getSumFlow()) {result = 1;}else {result = 0;}return result;}public void set(long upFlow, long downFlow) {this.upFlow = upFlow;this.downFlow = downFlow;this.sumFlow = upFlow + downFlow;}
}

(2)编写Mapper类

package com.cuiyf41.sort;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text> {FlowBean k = new FlowBean();Text v = new Text();@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, FlowBean, Text>.Context context) throws IOException, InterruptedException {// 1 获取一行String line = value.toString();// 2 截取String[] fields = line.split("\t");// 3 封装对象String phoneNum = fields[0];long upFlow = Long.parseLong(fields[1]);long downFlow = Long.parseLong(fields[2]);k.set(upFlow, downFlow);v.set(phoneNum);// 4 输出context.write(k, v);}
}

(3)编写Reducer类

package com.cuiyf41.sort;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean> {@Overrideprotected void reduce(FlowBean key, Iterable<Text> values, Reducer<FlowBean, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {// 循环输出,避免总流量相同情况for(Text value: values){context.write(value, key);}}
}

(4)编写Driver类

package com.cuiyf41.flowsum;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> {FlowBean v = new FlowBean();Text k = new Text();@Overrideprotected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {// 1 获取一行String line = value.toString();// 2 切割字段String[] fields = line.split("\t");// 3 封装对象// 取出手机号码String phoneNum = fields[1];// 取出上行流量和下行流量long upFlow = Long.parseLong(fields[fields.length - 3]);long downFlow = Long.parseLong(fields[fields.length - 2]);k.set(phoneNum);
//        FlowBean v = new FlowBean(upFlow, downFlow);v.set(upFlow, downFlow);// 4 写出context.write(k, v);}
}

3.3.6WritableComparable排序案例实操(区内排序)

1.需求

要求每个省份手机号输出的文件中按照总流量内部排序。

2.需求分析

基于前一个需求,增加自定义分区类,分区按照省份手机号设置。

Untitled

3.案例实操

(1)增加自定义分区类

package com.cuiyf41.sort;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;public class ProvincePartitioner extends Partitioner<FlowBean, Text> {@Overridepublic int getPartition(FlowBean key, Text value, int numPartitions) {// 1 获取手机号码前三位String preNum = value.toString().substring(0, 3);int partition = 4;// 2 根据手机号归属地设置分区if ("136".equals(preNum)) {partition = 0;}else if ("137".equals(preNum)) {partition = 1;}else if ("138".equals(preNum)) {partition = 2;}else if ("139".equals(preNum)) {partition = 3;}return partition;}
}

(2)在驱动类中添加分区类

// 加载自定义分区类
job.setPartitionerClass(ProvincePartitioner.class);// 设置Reducetask个数
job.setNumReduceTasks(5);

3.3.7Combiner合并

1)概述

(1)Combiner是MR程序中Mapper和Reducer之外的一个组件。

(2)Combiner组件的父类就是Reducer。

(3)Combiner和Reducer的区别在于运行的维值

Combiner是在每个MapTask所在的节点运行

Reducer是接收全局所有Mapper的输出结果

(4)Combiner的意义就是对每一个MapTask的输出进行局部汇总,以减少网络传输量。

(5)Combiner能够应用的前提是不能影响最终的业务逻辑,而且Combiner的输出kv应该跟Reducer的输入kv类型保持一致。

Mapper Reducer

3 5 7 →(3+5+7)/3 = 5 (3+5+7+2+6)/5 = 23/5 等于(5+4)/2 = 9/2

2 6 →(2+6)/2 = 4

2)自定义Combiner实现步骤

(a)自定义一个Combiner继承Reducer,重写Reduce方法

public class WordcountCombiner extends Reducer<Text, IntWritable, Text,IntWritable>{@Overrideprotected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {// 1 汇总操作int count = 0;for(IntWritable v :values){count += v.get();}// 2 写出context.write(key, new IntWritable(count));}
}

(b)在Job驱动类中设置:

job.setCombinerClass(WordcountCombiner.class);

3.3.8Combiner合并案例实操

1、需求

统计过程中对每一个MapTask的输出进行局部汇总,以减小网络传输量即采用Combiner功能。

(1)数据输入

(2)期望输出数据

期望:Combine输入数据多,输出时经过合并,输出数据降低。

2、需求分析

Untitled

3.案例实操-方案一

1)增加一个WordcountCombiner类继承Reducer

package com.cuiyf41.wordcount;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class WordcountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {IntWritable v = new IntWritable();@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {// 1 汇总int sum = 0;for(IntWritable value :values){sum += value.get();}v.set(sum);// 2 写出context.write(key, v);}
}

2)在WordcountDriver驱动类中指定Combiner

// 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordcountCombiner.class);

4.案例实操-方案二

1)将WordcountReducer作为Combiner在WordcountDriver驱动类中指定

// 指定需要使用Combiner,以及用哪个类作为Combiner的逻辑
job.setCombinerClass(WordcountReducer.class);

3.3.9GroupingComparator分组(辅助排序)

1)概述

对Reduce阶段的数据根据某一个或几个字段进行分组。

分组排序步骤:

(1)自定义类继承WritableComparator

(2)重写compare()方法

@Override
public int compare(WritableComparable a, WritableComparable b) {// 比较的业务逻辑return result;
}

(3)创建一个构造将比较对象的类传给父类

protected OrderGroupingComparator() {super(OrderBean.class, true);
}

3.3.10GroupingComparator分组案例实操

1、需求

有如下订单数据

Untitled

现在需要求出每一个订单中最贵的商品。

(1)输入数据

0000001	Pdt_01	222.8
0000002	Pdt_05	722.4
0000001	Pdt_02	33.8
0000003	Pdt_06	232.8
0000003	Pdt_02	33.8
0000002	Pdt_03	522.8
0000002	Pdt_04	122.4

(2)期望输出数据

1	222.8
2	722.4
3	232.8

2、需求分析

(1)利用“订单id和成交金额”作为key,可以将Map阶段读取到的所有订单数据按照id升序排序,如果id相同再按照金额降序排序,发送到Reduce。

(2)在Reduce端利用groupingComparator将订单id相同的kv聚合成组,然后取第一个即是该订单中最贵商品,如图4-18所示。

Untitled

3、代码实现

(1)定义订单信息OrderBean类

package com.cuiyf41.order;import org.apache.hadoop.io.WritableComparable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class OrderBean implements WritableComparable<OrderBean> {private int order_id; // 订单id号private double price; // 价格public OrderBean() {super();}public OrderBean(int order_id, double price) {super();this.order_id = order_id;this.price = price;}// 二次排序@Overridepublic int compareTo(OrderBean o) {int result;if (order_id > o.getOrder_id()) {result = 1;} else if (order_id < o.getOrder_id()) {result = -1;} else {// 价格倒序排序result = price > o.getPrice() ? -1 : 1;}return result;}@Overridepublic void write(DataOutput out) throws IOException {out.writeInt(order_id);out.writeDouble(price);}@Overridepublic void readFields(DataInput in) throws IOException {order_id = in.readInt();price = in.readDouble();}@Overridepublic String toString() {return order_id + "\t" + price;}public int getOrder_id() {return order_id;}public void setOrder_id(int order_id) {this.order_id = order_id;}public double getPrice() {return price;}public void setPrice(double price) {this.price = price;}
}

(2)编写OrderSortMapper类

package com.cuiyf41.order;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {OrderBean k = new OrderBean();@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, OrderBean, NullWritable>.Context context) throws IOException, InterruptedException {// 1 获取一行String line = value.toString();// 2 截取String[] fields = line.split("\t");// 3 封装对象k.setOrder_id(Integer.parseInt(fields[0]));k.setPrice(Double.parseDouble(fields[2]));// 4 写出context.write(k, NullWritable.get());}
}

(3)编写OrderSortGroupingComparator类

package com.cuiyf41.order;import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;public class OrderGroupingComparator extends WritableComparator {protected OrderGroupingComparator() {super(OrderBean.class, true);}@Overridepublic int compare(WritableComparable a, WritableComparable b) {OrderBean aBean = (OrderBean) a;OrderBean bBean = (OrderBean) b;int result;if (aBean.getOrder_id() > bBean.getOrder_id()) {result = 1;} else if (aBean.getOrder_id() < bBean.getOrder_id()) {result = -1;} else {result = 0;}return result;}
}

(4)编写OrderSortReducer类

package com.cuiyf41.order;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {@Overrideprotected void reduce(OrderBean key, Iterable<NullWritable> values, Reducer<OrderBean, NullWritable, OrderBean, NullWritable>.Context context) throws IOException, InterruptedException {context.write(key, NullWritable.get());}
}

(5)编写OrderSortDriver类

package com.cuiyf41.order;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class OrderDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {// 输入输出路径需要根据自己电脑上实际的输入输出路径设置args  = new String[]{"e:/input/inputorder" , "e:/output1"};// 1 获取配置信息Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 设置jar包加载路径job.setJarByClass(OrderDriver.class);// 3 加载map/reduce类job.setMapperClass(OrderMapper.class);job.setReducerClass(OrderReducer.class);// 4 设置map输出数据key和value类型job.setMapOutputKeyClass(OrderBean.class);job.setMapOutputValueClass(NullWritable.class);// 5 设置最终输出数据的key和value类型job.setOutputKeyClass(OrderBean.class);job.setOutputValueClass(NullWritable.class);// 6 设置输入数据和输出数据路径Path input = new Path(args[0]);Path output = new Path(args[1]);// 如果输出路径存在,则进行删除FileSystem fs = FileSystem.get(conf);if (fs.exists(output)) {fs.delete(output,true);}FileInputFormat.setInputPaths(job, input);FileOutputFormat.setOutputPath(job, output);// 8 设置reduce端的分组job.setGroupingComparatorClass(OrderGroupingComparator.class);// 7 提交boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

http://www.ppmy.cn/news/26668.html

相关文章

Python打包调试问题解决

使用pyinstaller打包&#xff0c;发现问题&#xff1a;代码运行时调试的结果不一致代码中设定的图标打包后没有显示出来打包代码程序test.py为入口函数main&#xff08;&#xff09;所在的文件pyinstaller -F -w -i test.ico test.py 不会出现控制台&#xff0c;图标为test.ic…

Linux查看文件的命令

目录 1、tail 2、head 3、cat 4、more 5、sed 6、less Linux查看日志的命令有多种: tail、cat、tac、head、echo等&#xff0c;本文只介绍几种常用的方法。 1、tail 命令格式: tail[必要参数][选择参数][文件] -f 循环读取 -q 不显示处理信息 -v 显示详细的处理信…

通讯录的实现

一、目的&#xff1a;使用C实现通讯录二、包含功能&#xff1a;添加联系人:向通讯录中添加新人&#xff0c;信息包括&#xff08;姓名、性别、年龄、联系电话、家庭住址&#xff09;最多记录1000人显示联系人:显示通讯录中所有联系人信息删除联系人:按照姓名进行删除指定联系人…

【Linux操作系统】【综合实验三 用户帐号、文件系统与系统安全管理】

文章目录一、实验目的二、实验要求三、实验内容四、实验报告要求一、实验目的 要求掌握Linux系统用户的创建、删除与管理操作&#xff1b;熟悉Linux文件系统的管理模式&#xff0c;学会创建用户文件系统并装载和卸载文件系统&#xff1b;掌握超级用户的管理方式与权限&#xf…

雷达编程实战之恒虚警率(CFAR)检测

在雷达系统中&#xff0c;目标检测是一项非常重要的任务。检测本身非常简单&#xff0c;它将信号与阈值进行比较&#xff0c;超过阈值的信号则认为是目标信号&#xff0c;所以目标检测的真正工作是寻找适当的阈值。由于目标误检的严重后果&#xff0c;因此雷达系统希望有一个检…

很好用的 UI 调试技巧

文章目录 UI调试效果(一)评论最后UI调试小姑(二)参考文档 很好用的 UI 调试技巧 UI调试效果(一) javascript: (function() {const style = document<

化解射频和微波设计挑战的六个技巧

即使是最自信的设计人员&#xff0c;对于射频电路也往往望而却步&#xff0c;因为它会带来巨大的设计挑战&#xff0c;并且需要专业的设计和分析工具。这里将为您介绍六条技巧&#xff0c;来帮助您简化任何射频PCB 设计任务和减轻工作压力&#xff01; 1、保持完好、精确的射频…

Python 之 Pandas DataFrame 数据类型的简介、创建的列操作

文章目录一、DataFrame 结构简介二、DataFrame 对象创建1. 使用普通列表创建2. 使用嵌套列表创建3 指定数值元素的数据类型为 float4. 字典嵌套列表创建5. 添加自定义的行标签6. 列表嵌套字典创建 DataFrame 对象7. Series 创建 DataFrame 对象三、DataFrame 列操作1. 选取数据…