空间复杂度与时间复杂度

news/2024/11/8 14:57:17/

1、时间复杂度和空间复杂度

(1)时间复杂度、空间复杂度是什么?

  • 算法效率分析分为两种:第一种是时间效率,第二种是空间效率。
  • 时间效率被称为时间复杂度,空间效率被称作空间复杂度
  • 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间
  • 在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度,如今更加考虑时间复杂度

(2)时间复杂度的计算

void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}//实际执行N * N + 2 * N + 10

①代码解析

实际的们计算时间复杂度的时候,不用计算如此精确的执行次数,于是这里我们使用大O渐进表示法,时间复杂度不算时间,算次数

②大O表示法

是用于描述函数渐进行为的数学符号

③推导方法

  • 用常数1取代运行时间中的所有加法常数
  • 在修改后的运行函数中,只保留最高阶项
  • 如果高阶项存在且不是1,则去除于这个项目相乘的常数

④最好、平均、最坏情况:

  • 最好情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

⑤推导例子

void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}
//2 * N + 10 ====> O(N)
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;    }printf("%d\n", count);
}
//M + N====>O(M + N)
//如果M远大于N====>O(M)
//如果M、N相差不大====>O(2 * M)/O(2 * N)====>O(M)/O(N)
void Func4(int N)//N没有用到,时间复杂度与N无关
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}
//100====>O(1),反过来就说明输入数据了常数次
//计算strchr的时间复杂度?
const char * strchr ( const char * str, char character )
{while(*str != '\0'){if(*str == character)return str;++str;}return NULL;
}
//需要分情况:最坏、平均、最好,假设字符串长度为N
//最坏的没有找到或者在最后找到====>O(N)
//平均就是O(N / 2)
//最坏就是O(1)
//当要分情况的时候要用最坏的情况表示,因此最终结果就是O(N)  
// 计算BubbleSort的时间复杂度?(冒泡排序)
void BubbleSort(int* a, int n)
{assert(a);//断言for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);//调换两个元素exchange = 1;}}if (exchange == 0)break;}
}
//这个也要分情况
//第一次冒泡N次(也可以理解为N - 1的)
//第二次冒泡N - 1次
//……
//第N次冒泡1次
//和为((1 + N) * N) / 2
//因此最坏情况O(N^2)
// 计算BinarySearch的时间复杂度?(二分查找法)
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n;while (begin < end){int mid = begin + ((end-begin) >> 1);//求平均值if (a[mid] < x){    begin = mid+1;}else if (a[mid] > x){end = mid;}else{return mid;}}return -1;
}
//这个也要分情况
//O(log(2)N)简写为log(N),最好不要写lg(N)尽管有的地方会这样写,详细解说在下面

在这里插入图片描述

// 计算阶乘递归Factorial的时间复杂度?
long long Factorial(size_t N)
{return N < 2 ? N : Factorial(N-1) * N;
}
//Factorial(10)
//Factorial(9) * 10
//Factorial(8) * 9
//……
//Factorial(1) * 2
递归了N次,每次就是O(1),整体就是O(N)
//如果假设递归内用的是循环语句for(int i = 0; i < N; ++i);则每次是O(N),整体就是O(N^2)

⑥常见的时间复杂度对比

O(1) < O(logN) < O(N) < O(N^2)

(3)空间复杂度的计算

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}
//标粗的地方占用了变量,即5====>O(1)
//注意时间是累积的,空间是不累积的(因为重复利用了一个空间)

①代码解析

实际的们计算空间复杂度的时候,也不用计算如此精确的空间,只需要知道大概的执行次数即可,于是这里我们也同样使用大O渐进表示法,空间复杂度不算空间,算变量个数

②大O表示法

是用于描述函数渐进行为的数学符号

③推导方法

  • 用常数1取代运行时间中的所有加法常数
  • 在修改后的运行函数中,只保留最高阶项
  • 如果高阶项存在且不是1,则去除于这个项目相乘的常数

④推导例子

// 计算Fibonacci的空间复杂度?(斐波那契数列)
long long* Fibonacci(size_t n)
{if(n==0){return NULL;}long long* fibArray = (long long*)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}
//O(N + 6)====>O(N)
//虽然大部分算法的空间复杂度都是O(1)
// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{return N < 2 ? N : Factorial(N - 1) * N;
}
//递归调用了n层,每次调用建立一个栈帧,每次使用了常数O(1),整体就是O(N)

2、有关的练习题目

(1)面试题 17.04. 消失的数字 - 力扣(LeetCode)

//思路一:
int missingNumber(int* nums, int numsSize)
{int add_1 = 0;int add_2 = 0;add_1 = ( (0 + numsSize) * (numsSize + 1) ) / 2;for(int i = 0; i < numsSize; i++){add_2 += nums[i];}return add_1 - add_2;
}
//思路二:
int missingNumber(int* nums, int numsSize)
{int x = 0;int i = 0;for(i = 0; i < numsSize; i++)//用for循环求出数组nums元素的异或和{x ^= nums[i];}for(i = 0; i < numsSize + 1; i++)//运用异或的性质a^a=0来找出消失的数字{x ^= i;}return x;
}

(2)189. 轮转数组 - 力扣(LeetCode)

//思路一:
void rotate(int* nums, int numsSize, int k)
{while(k--){int tmp = nums[numsSize - 1];//保留最后一个数字for(int end = numsSize - 2; end >= 0; --end)//开始将最后一个数字前面的所有数字后移{nums[end + 1] = nums[end];}nums[0] = tmp;}
}
//但是超出了时间限制
//思路二:
void Reverse(int* nums, int left, int right)
{while(left < right)//奇数个会相等,偶数个会错开{int tmp = nums[left];nums[left] = nums[right];nums[right] = tmp;++left;--right;}
}
void rotate(int* nums, int numsSize, int k)
{if(k >= numsSize)//防止k大于数组大小,例如7个元素旋转13次和6次等价{k %= numsSize;}Reverse(nums, numsSize - k, numsSize - 1);//后半部分Reverse(nums, 0, numsSize - k - 1);//前半部分Reverse(nums, 0, numsSize - 1);
}

http://www.ppmy.cn/news/25712.html

相关文章

2022黑马Redis跟学笔记.实战篇(四)

2022黑马Redis跟学笔记.实战篇 四4.3.秒杀优惠券功能4.3.1.秒杀优惠券的基本实现一、优惠卷秒杀1.1 全局唯一ID1.2 Redis实现全局唯一Id1.3 添加优惠卷1.4 实现秒杀下单4.3.2.超卖问题4.3.3.基于乐观锁解决超卖问题1. 悲观锁2. 乐观锁3. 乐观锁解决超卖问题4.4 秒杀的一人一单限…

【MySQL】数据库基础

目录 1、什么是数据库 2、 数据库基本操作 2.1 查看当前数据库 2.2 创建一个数据库 2.3 选中数据库 2.4 删除数据库 3、常见的数据类型 3.1 数值类型 3.2 字符串类型 3.3 日期类型 4、表的操作 4.1 创建表 4.2 查看指定数据库下的所有表 4.3 查看表的结构 4.…

【MT7628】固件开发-SDK4320添加MT7612E WiFi驱动操作说明

解压5G WiFi MT7612E驱动1.1解压指令 tar -xvf MT76x2E_MT7620_LinuxAP_V3.0.4.0_P2_DPA_20160308.tar.bz2 1.2解压之后会出现以下两个目录 rlt_wifi rlt_wifi_ap 1.3将解压后的文件拷贝到系统下 拷贝路径 RT288x_SDK/source/linux-2.6.36.x/drivers/net/wireless 内核中打开驱…

极验3代 加密分析

目标链接 aHR0cHM6Ly93d3cuZ2VldGVzdC5jb20vZGVtby9zbGlkZS1mbG9hdC5odG1s接口分析 极验参数重要信息 gt和challenge&#xff1b;gt是固定的&#xff0c;但是challenge每次请求会产生不同的&#xff0c;这里的请求的并没有什么加密参数。 下一个请求 gettype.php&#xff0c…

element-ui中el-table点击其他自定义按钮展开table中某一行

element-ui中el-table点击其他自定义按钮展开table中某一行 在日常开发中&#xff0c;我们遇见了会有点击某些按钮&#xff0c;使得表格行展开的需求&#xff0c;这时候去查看文档 element-ui&#xff08;table&#xff09; 这里官方提供了示例为在行最左侧有一个展开合并ico…

深入理解MySQLⅢ -- 锁与InnoDB引擎

文章目录锁概述全局锁表级锁表锁元数据锁意向锁行级锁行锁间隙锁&临键锁InnoDB引擎逻辑存储结构架构内存结构磁盘结构后台线程事务原理redo logundo logMVCC锁 概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中&#xff0c;除传统的计算资源&#x…

MySQL 派生表产生关联索引auto_key0导致SQL非常的慢

相同的SQL在maridb运行0.5秒&#xff0c;在MySQL8.0.26中运行要19秒 官方MySQL在处理子查时&#xff0c;优化器有个优化参数derived_merge&#xff0c;MySQL7开启添加&#xff0c;默认on.很多情况可以自动优化派生表&#xff0c;避免创建临时索引auto_key0和生成临时表数据做…

图文详解Ansible中的变量及加密

文章目录一、变量命名二、变量级别三、.变量设定和使用方式1.在playbook中直接定义变量2.在文件中定义变量3.使用变量4.设定主机变量和清单变量5.目录设定变量6.用命令覆盖变量7.使用数组设定变量8.注册变量9.事实变量10.魔法变量四、JINJA2模板五、 Ansible的加密控制练习1.用…