深度学习100例 -卷积神经网络(ResNet-50)鸟类识别 | 第8天

news/2024/11/28 11:41:24/

文章目录

  • 一、前期工作
    • 1. 设置GPU
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
  • 三、残差网络(ResNet)介绍
    • 1. 残差网络解决了什么
    • 2. ResNet-50介绍
  • 四、构建ResNet-50网络模型
  • 五、编译
  • 六、训练模型
  • 七、模型评估
  • 八、保存and加载模型
  • 九、预测

一、前期工作

本文将采用ResNet-50实现鸟类图片的识别分类

🚀 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
  • 数据和代码:📌【传送门】

🚀 来自专栏:《深度学习100例》

如果你是一名深度学习小白可以先看看我这个专门为你写的专栏:《小白入门深度学习》

  1. 小白入门深度学习 | 第一篇:配置深度学习环境
  2. 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
  3. 小白入门深度学习 | 第三篇:深度学习初体验
  4. 小白入门深度学习 | 第四篇:配置PyTorch环境

🚀 往期精彩-卷积神经网络篇:

  1. 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
  2. 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
  3. 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
  4. 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
  5. 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
  6. 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天
  7. 深度学习100例-卷积神经网络(VGG-19)识别灵笼中的人物 | 第7天
  8. 深度学习100例-卷积神经网络(ResNet-50)鸟类识别 | 第8天
  9. 深度学习100例-卷积神经网络(AlexNet)手把手教学 | 第11天
  10. 深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天
  11. 深度学习100例-卷积神经网络(Inception V3)识别手语 | 第13天
  12. 深度学习100例-卷积神经网络(Inception-ResNet-v2)识别交通标志 | 第14天
  13. 深度学习100例-卷积神经网络(CNN)实现车牌识别 | 第15天
  14. 深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
  15. 深度学习100例-卷积神经网络(CNN)注意力检测 | 第17天
  16. 深度学习100例-卷积神经网络(VGG-16)猫狗识别 | 第21天
  17. 深度学习100例-卷积神经网络(LeNet-5)深度学习里的“Hello Word” | 第22天
  18. 深度学习100例-卷积神经网络(CNN)3D医疗影像识别 | 第23天
  19. 深度学习100例 | 第24天-卷积神经网络(Xception):动物识别

🚀 往期精彩-循环神经网络篇:

  1. 深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天
  2. 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天

🚀 往期精彩-生成对抗网络篇:

  1. 深度学习100例-生成对抗网络(GAN)手写数字生成 | 第18天
  2. 深度学习100例-生成对抗网络(DCGAN)手写数字生成 | 第19天
  3. 深度学习100例-生成对抗网络(DCGAN)生成动漫小姐姐 | 第20天

转载请通过左侧联系方式(电脑端可看)、或者站内私信的方式联系我


1. 设置GPU

如果使用的是CPU可以注释掉这部分的代码。

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib
data_dir = "D:/jupyter notebook/DL-100-days/datasets/bird_photos"data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*')))print("图片总数为:",image_count)
图片总数为: 565

二、数据预处理

文件夹数量
Bananaquit166 张
Black Throated Bushtiti111 张
Black skimmer122 张
Cockatoo166张

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 8
img_height = 224
img_width = 224

TensorFlow版本是2.2.0的同学可能会遇到module 'tensorflow.keras.preprocessing' has no attribute 'image_dataset_from_directory'的报错,升级一下TensorFlow就OK了。

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 452 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 113 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['Bananaquit', 'Black Throated Bushtiti', 'Black skimmer', 'Cockatoo']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5
plt.suptitle("微信公众号:K同学啊")for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

plt.imshow(images[1].numpy().astype("uint8"))

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(8, 224, 224, 3)
(8,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状240x240x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

4. 配置数据集

  • shuffle() : 打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

如果报AttributeError: module 'tensorflow._api.v2.data' has no attribute 'AUTOTUNE'错误,将AUTOTUNE = tf.data.AUTOTUNE更换为AUTOTUNE = tf.data.experimental.AUTOTUNE

三、残差网络(ResNet)介绍

1. 残差网络解决了什么

残差网络是为了解决神经网络隐藏层过多时,而引起的网络退化问题。退化(degradation)问题是指:当网络隐藏层变多时,网络的准确度达到饱和然后急剧退化,而且这个退化不是由于过拟合引起的。

拓展: 深度神经网络的“两朵乌云”

  • 梯度弥散/爆炸

简单来讲就是网络太深了,会导致模型训练难以收敛。这个问题可以被标准初始化和中间层正规化的方法有效控制。(现阶段知道这么一回事就好了)

  • 网络退化

随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降,这个退化不是由于过拟合引起的。

2. ResNet-50介绍

ResNet-50有两个基本的块,分别名为Conv BlockIdentity Block

Conv Block结构:

在这里插入图片描述

Identity Block结构:

在这里插入图片描述

ResNet-50总体结构:

在这里插入图片描述

四、构建ResNet-50网络模型

下面是本文的重点,可以试着按照上面三张图自己构建一下ResNet-50

from keras import layersfrom keras.layers import Input,Activation,BatchNormalization,Flatten
from keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D
from keras.models import Modeldef identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersname_base = str(stage) + block + '_identity_block_'x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size,padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)x = layers.add([x, input_tensor] ,name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return xdef conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersres_name_base = str(stage) + block + '_conv_block_res_'name_base = str(stage) + block + '_conv_block_'x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor)shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut)x = layers.add([x, shortcut], name=name_base+'add')x = Activation('relu', name=name_base+'relu4')(x)return xdef ResNet50(input_shape=[224,224,3],classes=1000):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)x =     conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')x =     conv_block(x, 3, [128, 128, 512], stage=3, block='a')x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')x =     conv_block(x, 3, [256, 256, 1024], stage=4, block='a')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')x =     conv_block(x, 3, [512, 512, 2048], stage=5, block='a')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')x = AveragePooling2D((7, 7), name='avg_pool')(x)x = Flatten()(x)x = Dense(classes, activation='softmax', name='fc1000')(x)model = Model(img_input, x, name='resnet50')# 加载预训练模型model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5")return modelmodel = ResNet50()
model.summary()
Model: "resnet50"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 224, 224, 3) 0                                            
__________________________________________________________________________________________________
zero_padding2d (ZeroPadding2D)  (None, 230, 230, 3)  0           input_1[0][0]                    
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 112, 112, 64) 9472        zero_padding2d[0][0]             
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 112, 112, 64) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation (Activation)         (None, 112, 112, 64) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D)    (None, 55, 55, 64)   0           activation[0][0]                 
__________________________________________________________________________________________________
2a_conv_block_conv1 (Conv2D)    (None, 55, 55, 64)   4160        max_pooling2d[0][0]              
__________________________________________________________________________________________________
2a_conv_block_bn1 (BatchNormali (None, 55, 55, 64)   256         2a_conv_block_conv1[0][0]        
__________________________________________________________________________________________________
2a_conv_block_relu1 (Activation (None, 55, 55, 64)   0           2a_conv_block_bn1[0][0]          
__________________________________________________________________________________________________
2a_conv_block_conv2 (Conv2D)    (None, 55, 55, 64)   36928       2a_conv_block_relu1[0][0]        
__________________________________________________________________________________________________
2a_conv_block_bn2 (BatchNormali (None, 55, 55, 64)   256         2a_conv_block_conv2[0][0]        
__________________________________________________________________________________________________
2a_conv_block_relu2 (Activation (None, 55, 55, 64)   0           2a_conv_block_bn2[0][0]          
__________________________________________________________________________________________________
2a_conv_block_conv3 (Conv2D)    (None, 55, 55, 256)  16640       2a_conv_block_relu2[0][0]        
__________________________________________________________________________________________________
2a_conv_block_res_conv (Conv2D) (None, 55, 55, 256)  16640       max_pooling2d[0][0]              
__________________________________________________________________________________________________
2a_conv_block_bn3 (BatchNormali (None, 55, 55, 256)  1024        2a_conv_block_conv3[0][0]        
__________________________________________________________________________________________________
2a_conv_block_res_bn (BatchNorm (None, 55, 55, 256)  1024        2a_conv_block_res_conv[0][0]     
__________________________________________________________________________________________________
2a_conv_block_add (Add)         (None, 55, 55, 256)  0           2a_conv_block_bn3[0][0]          2a_conv_block_res_bn[0][0]       
__________________________________________________________________________________________________
2a_conv_block_relu4 (Activation (None, 55, 55, 256)  0           2a_conv_block_add[0][0]          
__________________________________________________________________________________________________
2b_identity_block_conv1 (Conv2D (None, 55, 55, 64)   16448       2a_conv_block_relu4[0][0]        
__________________________________________________________________________________________________
2b_identity_block_bn1 (BatchNor (None, 55, 55, 64)   256         2b_identity_block_conv1[0][0]    =============================================================此处省略了若干行,此处省略了若干行,此处省略了若干行=============================================================
__________________________________________________________________________________________________
5c_identity_block_relu2 (Activa (None, 7, 7, 512)    0           5c_identity_block_bn2[0][0]      
__________________________________________________________________________________________________
5c_identity_block_conv3 (Conv2D (None, 7, 7, 2048)   1050624     5c_identity_block_relu2[0][0]    
__________________________________________________________________________________________________
5c_identity_block_bn3 (BatchNor (None, 7, 7, 2048)   8192        5c_identity_block_conv3[0][0]    
__________________________________________________________________________________________________
5c_identity_block_add (Add)     (None, 7, 7, 2048)   0           5c_identity_block_bn3[0][0]      5b_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
5c_identity_block_relu4 (Activa (None, 7, 7, 2048)   0           5c_identity_block_add[0][0]      
__________________________________________________________________________________________________
avg_pool (AveragePooling2D)     (None, 1, 1, 2048)   0           5c_identity_block_relu4[0][0]    
__________________________________________________________________________________________________
flatten (Flatten)               (None, 2048)         0           avg_pool[0][0]                   
__________________________________________________________________________________________________
fc1000 (Dense)                  (None, 1000)         2049000     flatten[0][0]                    
==================================================================================================
Total params: 25,636,712
Trainable params: 25,583,592
Non-trainable params: 53,120
__________________________________________________________________________________________________

五、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器,我这里改变了学习率。
opt = tf.keras.optimizers.Adam(learning_rate=1e-7)model.compile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])

六、训练模型

epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/10
57/57 [==============================] - 12s 86ms/step - loss: 2.4313 - accuracy: 0.6548 - val_loss: 213.7383 - val_accuracy: 0.3186
Epoch 2/10
57/57 [==============================] - 3s 52ms/step - loss: 0.4293 - accuracy: 0.8557 - val_loss: 9.0470 - val_accuracy: 0.2566
Epoch 3/10
57/57 [==============================] - 3s 52ms/step - loss: 0.2309 - accuracy: 0.9183 - val_loss: 1.4181 - val_accuracy: 0.7080
Epoch 4/10
57/57 [==============================] - 3s 53ms/step - loss: 0.1721 - accuracy: 0.9535 - val_loss: 2.5627 - val_accuracy: 0.6726
Epoch 5/10
57/57 [==============================] - 3s 53ms/step - loss: 0.0795 - accuracy: 0.9701 - val_loss: 0.2747 - val_accuracy: 0.8938
Epoch 6/10
57/57 [==============================] - 3s 52ms/step - loss: 0.0435 - accuracy: 0.9899 - val_loss: 0.1483 - val_accuracy: 0.9381
Epoch 7/10
57/57 [==============================] - 3s 52ms/step - loss: 0.0308 - accuracy: 0.9970 - val_loss: 0.1705 - val_accuracy: 0.9381
Epoch 8/10
57/57 [==============================] - 3s 52ms/step - loss: 0.0019 - accuracy: 1.0000 - val_loss: 0.0674 - val_accuracy: 0.9735
Epoch 9/10
57/57 [==============================] - 3s 52ms/step - loss: 8.2391e-04 - accuracy: 1.0000 - val_loss: 0.0720 - val_accuracy: 0.9735
Epoch 10/10
57/57 [==============================] - 3s 52ms/step - loss: 6.0079e-04 - accuracy: 1.0000 - val_loss: 0.0762 - val_accuracy: 0.9646

七、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.suptitle("微信公众号:K同学啊")plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

八、保存and加载模型

这是最简单的模型保存与加载方法哈

# 保存模型
model.save('model/my_model.h5')
# 加载模型
new_model = keras.models.load_model('model/my_model.h5')

九、预测

# 采用加载的模型(new_model)来看预测结果plt.figure(figsize=(10, 5))  # 图形的宽为10高为5
plt.suptitle("微信公众号:K同学啊")for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  # 显示图片plt.imshow(images[i].numpy().astype("uint8"))# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物predictions = new_model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

在这里插入图片描述

其他精彩内容:

  • 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
  • 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
  • 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
  • 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
  • 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
  • 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天

《深度学习100例》专栏直达:【传送门】

如果觉得本文对你有帮助记得 点个关注,给个赞,加个收藏


http://www.ppmy.cn/news/249798.html

相关文章

基于TensorFlow的手写体识别(十种标签识别,五种作者识别)

基于TensorFlow的手写体识别(十种标签识别,五种作者识别) 这是一篇学习笔记,主要用于日后复习,有很多冗余的地方,大部分内容参考了原 ‘tensorflow 猫狗大战’ 的程序 参考的 ‘tensorflow 猫狗大战’ 的链…

音视频技术开发周刊 | 195

每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 小提示:链接跳转仅支持公众号相关链接 基于深度学习的实时噪声抑制——深度学习落地移动端的范例 在实时通讯技术迅猛发展的今天,人们对通话时的降…

Zabbix后续,邮件+企业微信监控

本文是上一篇zabbix安装配置的后续,主要介绍配合通讯工具实时监控 使用公网邮箱发送邮件 邮件系统简要介绍: 电子邮件系统包括两个组件:MUA(Mail User Agent,邮件用户代理)和MTA(Mail Transport Agent,邮件传送代理 postfix&…

腾创秒会达视频会议产品简介

系统支持B/S 、C/S架构,实现多终端设备接入。 开放直播网页部分代码,可进行直播界面/UI自定义和二次功能开发。 音视频多方互动数据共享等核心功能: 一个会议室只有一个固定主持人,参会者可以临时申请主持,在作为临时主…

[论文阅读](图像/视频质量评价系列)

文章目录 [2021] (QoMEX) Image Super-Resolution Quality Assessment:Structural Fidelity Versus Statistical Naturalness摘要引言2D QUALITY ASSESSMENT OF SISR IMAGESFUSING 2D ASSESSMENT FOR 1D PREDICTION结论 [2022] ERQA: Edge-Restoration Quality Assessment for …

Prometheus+SpringBoot应用监控全过程详解

1. Prometheus是什么 Prometheus是一个具有活跃生态系统的开源系统监控和告警工具包。一言以蔽之,它是一套开源监控解决方案。 Prometheus主要特性: 多维数据模型,其中包含由指标名称和键/值对标识的时间序列数据PromQL,一种灵…

基于MATLAB BP神经网络的数字图像识别

【摘要】 随着现代社会的发展,信息的形式和数量正在迅猛增长。其中很大一部分是图像,图像可以把事物生动的呈现在我们面前,让我们更直观地接受信息。同时,计算机已经作为一种人们普遍使用的工具为人们的生产生活服务。如今我们也可…

基于Flask制作一个简易版桌面监控软件

/* 最近在B站上刷到一个视频,讲的是up主自己在上网课时和父母老师斗智斗勇,一边上课,一遍玩电脑游戏。我突然就感觉对于某些家长来说,监控电脑也许是个硬需求。市面上已经有诸如向日葵等远程监控,可以实现手机查看电脑…