ElasticSearch--1

news/2024/11/17 15:51:11/

第一章 ElasticSearch 概念

1-1 ElasticSearch 概念

The Elastic Stack, 包括 Elasticsearch、 Kibana、 Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。

Elaticsearch,简称为 ES, ES 是一个开源的高扩展的分布式全文搜索引擎, 是整个 ElasticStack 技术栈的核心。

它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。

1-2 全文搜索引擎

Google,百度类的网站搜索,它们都是根据网页中的关键字生成索引,我们在搜索的时候输入关键字,它们会将该关键字即索引匹配到的所有网页返回;还有常见的项目中应用日志的搜索等等。对于这些非结构化的数据文本,关系型数据库搜索不是能很好的支持。

这里说到的全文搜索引擎指的是目前广泛应用的主流搜索引擎。它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程。

1-3 ElasticSearch 应用实例

GitHub、维基百科、百度、新浪、阿里

第二章 ElasticSearch 入门

2-1 官方地址

官方网址

官方文档

Elasticsearch 7.8.0下载

Windows 版的 Elasticsearch 压缩包,解压即安装完毕,解压后的 Elasticsearch 的目录结构如下 :

目录

含义

bin

可执行脚本目录

config

配置目录

jdk

内置 JDK 目录

lib

类库

logs

日志目录

modules

模块目录

plugins

插件目录

解压后,进入 bin 文件目录,点击 elasticsearch.bat 文件启动 ES 服务 。

注意: 9300 端口为 Elasticsearch 集群间组件的通信端口, 9200 端口为浏览器访问的 http协议 RESTful 端口。

打开浏览器,输入地址: http://localhost:9200,测试返回结果,返回结果如下:

{"name" : "琪哥","cluster_name" : "elasticsearch","cluster_uuid" : "8nGKx-9LTLywpqUKvDDGng","version" : {"number" : "7.8.0","build_flavor" : "default","build_type" : "zip","build_hash" : "757314695644ea9a1dc2fecd26d1a43856725e65","build_date" : "2020-06-14T19:35:50.234439Z","build_snapshot" : false,"lucene_version" : "8.5.1","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"
}

2-2 ElasticSearch与MYSQL类比

Elasticsearch 是面向文档型数据库,一条数据在这里就是一个文档。 为了方便大家理解,我们将 Elasticsearch 里存储文档数据和关系型数据库 MySQL 存储数据的概念进行一个类比

ES 里的 Index 可以看做一个库,而 Types 相当于表, Documents 则相当于表的行。这里 Types 的概念已经被逐渐弱化, Elasticsearch 6.X 中,一个 index 下已经只能包含一个type, Elasticsearch 7.X 中, Type 的概念已经被删除了。

2-3 HTTP索引

2-3-1 创建索引

对比关系型数据库,创建索引就等同于创建数据库。

在 Postman 中,向 ES 服务器发 PUT 请求 : http://127.0.0.1:9200/shopping

请求后,服务器返回响应:

{"acknowledged": true,//响应结果"shards_acknowledged": true,//分片结果"index": "shopping"//索引名称
}

如果重复发 PUT 请求 : http://127.0.0.1:9200/shopping 添加索引,会返回错误信息 :

{"error": {"root_cause": [{"type": "resource_already_exists_exception","reason": "index [shopping/J0WlEhh4R7aDrfIc3AkwWQ] already exists","index_uuid": "J0WlEhh4R7aDrfIc3AkwWQ","index": "shopping"}],"type": "resource_already_exists_exception","reason": "index [shopping/J0WlEhh4R7aDrfIc3AkwWQ] already exists","index_uuid": "J0WlEhh4R7aDrfIc3AkwWQ","index": "shopping"},"status": 400
}

2-3-2 查看所有索引

在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/_cat/indices?v 这里 _cat 表示查看的意思, indices 表示索引,与MySQL 中的 show tables 意思一致

服务器响应结果如下 :

health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.size
yellow open   shopping J0WlEhh4R7aDrfIc3AkwWQ   1   1          0            0       208b           208b

表头

含义

health

当前服务器健康状态: green(集群完整) yellow(单点正常、集群不完整) red(单点不正常)

status

索引打开、关闭状态

index

索引名

uuid

索引统一编号

pri

主分片数量

rep

副本数量

docs.count

可用文档数量

docs.deleted

文档删除状态(逻辑删除)

store.size

主分片和副分片整体占空间大小

pri.store.size

主分片占空间大小

postman示例图:

2-3-3 查看单个索引

在 Postman 中,向 ES 服务器发 GET 请求 : http://127.0.0.1:9200/shopping

返回结果如下:

{"shopping": {"aliases": {},"mappings": {},"settings": {"index": {"creation_date": "1675322492685","number_of_shards": "1","number_of_replicas": "1","uuid": "kefeAL0TRwet9Oz6DgzBNg","version": {"created": "7080099"},"provided_name": "shopping"}}}
}

2-3-4 删除索引

在 Postman 中,向 ES 服务器发 DELETE 请求 : http://127.0.0.1:9200/shopping

再次查看所有索引,GET http://127.0.0.1:9200/_cat/indices?v,返回结果如下:

health status index uuid pri rep docs.count docs.deleted store.size pri.store.size

删除成功。

2-4 HTTP文档

2-4-1 创建索引

假设索引已经创建好了,接下来我们来创建文档,并添加数据。这里的文档可以类比为关系型数据库中的表数据,添加的数据格式为 JSON 格式

在 Postman 中,向 ES 服务器发 POST 请求 : http://127.0.0.1:9200/shopping/_doc

注意未标明唯一标识时候必须为POST请求

返回结果:

{"_index": "shopping",//索引"_type": "_doc",//类型-文档"_id": "ANQqsHgBaKNfVnMbhZYU",//唯一标识,可以类比为 MySQL 中的主键,随机生成"_version": 1,//版本"result": "created",//结果,这里的 create 表示创建成功"_shards": {//"total": 2,//分片 - 总数"successful": 1,//分片 - 总数"failed": 0//分片 - 总数},"_seq_no": 0,"_primary_term": 1
}

上面的数据创建后,由于没有指定数据唯一性标识(ID),默认情况下, ES 服务器会随机生成一个。

如果想要自定义唯一性标识,需要在创建时指定: http://127.0.0.1:9200/shopping/_doc/doc_1

请求标明唯一标识后请求方式可为POST可为PUT

2-4-2 查询单个索引

查看文档时,需要指明文档的唯一性标识,类似于 MySQL 中数据的主键查询

在 Postman 中,向 ES 服务器发 GET 请求 : http://127.0.0.1:9200/shopping/_doc/1 。

查找不存在的内容时,返回结果如下:

2-4-3 查询所有索引

查看索引下所有数据,向 ES 服务器发 GET 请求 : http://127.0.0.1:9200/shopping/_search。

2-4-4 修改索引

全量修改

和新增文档一样,输入相同的 URL 地址请求,如果请求体变化,会将原有的数据内容覆盖

在 Postman 中,向 ES 服务器发 POST 请求 : http://127.0.0.1:9200/shopping/_doc/1

修改成功后响应结果:

{"_index": "shopping","_type": "_doc","_id": "1","_version": 2,"result": "updated",//<-----------updated 表示数据被更新"_shards": {"total": 2,"successful": 1,"failed": 0},"_seq_no": 2,"_primary_term": 1
}

局部修改

修改数据时,也可以只修改某一给条数据的局部信息

在 Postman 中,向 ES 服务器发 POST 请求 : http://127.0.0.1:9200/shopping/_update/1。

请求体JSON内容为:

{"doc": {"title":"小米手机","category":"小米"}
}

2-4-5 删除索引

删除一个文档不会立即从磁盘上移除,它只是被标记成已删除(逻辑删除)。

在 Postman 中,向 ES 服务器发 DELETE 请求 : http://127.0.0.1:9200/shopping/_doc/1

2-4-6 高级查询

条件查询

查找category为小米的文档

URL带参查询

在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search?q=category:小米,返回结果如下:

{"took": 45,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 1,"relation": "eq"},"max_score": 2.4079456,"hits": [{"_index": "shopping","_type": "_doc","_id": "doc_2","_score": 2.4079456,"_source": {"title": "小米手机","category": "华为","images": "http://www.gulixueyuan.com/xm.jpg","price": 3999.0}}]}
}

上述为URL带参数形式查询,这很容易让不善者心怀恶意,或者参数值出现中文会出现乱码情况。为了避免这些情况,我们可用使用带JSON请求体请求进行查询。

请求体带参查询

带请求体方式的查找所有内容

查找所有文档内容,也可以这样,在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"query":{"match_all":{}}
}
{"took": 1,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 3,"relation": "eq"},"max_score": 1.0,"hits": [{"_index": "shopping","_type": "_doc","_id": "dBrJKYYBYIWGZQXRZ2Lw","_score": 1.0,"_source": {"title": "小米手机","category": "小米","images": "http://www.gulixueyuan.com/xm.jpg","price": 3999.00}},{"_index": "shopping","_type": "_doc","_id": "dRrNKYYBYIWGZQXRNGLG","_score": 1.0,"_source": {"title": "小米手机","category": "小米","images": "http://www.gulixueyuan.com/xm.jpg","price": 3999.00}},{"_index": "shopping","_type": "_doc","_id": "doc_2","_score": 1.0,"_source": {"title": "小米手机","category": "华为","images": "http://www.gulixueyuan.com/xm.jpg","price": 3999.0}}]}
}

查询指定字段

如果你想查询指定字段,在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"query":{"match_all":{}},"_source":["title"]
}

分页查询

在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"query":{"match_all":{}},"from":1,  //起始位置"size":3   //结束位置
}

查询排序

如果你想通过排序查出价格最高的手机,在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"query":{"match_all":{}},"sort":{"price":{"order":"desc"}}
}

多条件查询

假设想找出小米牌子,价格为3999元的。(must相当于数据库的&&)

在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"query":{"bool":{"must":[{"match":{"category":"小米"}},{ "match":{"price":1999}}]}}
}

假设想找出小米和华为的牌子,并且价格大于2000的。(should相当于数据库的||)

在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"query":{"bool":{"should":[{"match":{"category":"小米"}},{"match":{"category":"华为"}}],"filter":{"range":{"price":{"gt":2000}}}}}
}

聚合查询

聚合允许使用者对 es 文档进行统计分析,类似与关系型数据库中的 group by,当然还有很多其他的聚合,例如取最大值max、平均值avg等等。

接下来按price字段进行分组:

在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"aggs":{//聚合操作"price_group":{//名称,随意起名"terms":{//分组"field":"price"//分组字段}}}
}
{"took": 21,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 3,"relation": "eq"},"max_score": 1.0,"hits": [{"_index": "shopping","_type": "_doc","_id": "dBrJKYYBYIWGZQXRZ2Lw","_score": 1.0,"_source": {"title": "小米手机","category": "小米","images": "http://www.gulixueyuan.com/xm.jpg","price": 1999}},{"_index": "shopping","_type": "_doc","_id": "doc_2","_score": 1.0,"_source": {"title": "小米手机","category": "华为","images": "http://www.gulixueyuan.com/xm.jpg","price": 3999.0}},{"_index": "shopping","_type": "_doc","_id": "dRrNKYYBYIWGZQXRNGLG","_score": 1.0,"_source": {"title": "小米手机","category": "小米","images": "http://www.gulixueyuan.com/xm.jpg","price": 3999.00}}]},"aggregations": {"price_group": {"doc_count_error_upper_bound": 0,"sum_other_doc_count": 0,"buckets": [{"key": 3999.0,"doc_count": 2},{"key": 1999.0,"doc_count": 1}]}}
}

上面返回结果会附带原始数据的。若不想要不附带原始数据的结果,在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"aggs":{"price_group":{"terms":{"field":"price"}}},"size":0
}
{"took": 60,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 6,"relation": "eq"},"max_score": null,"hits": []},"aggregations": {"price_group": {"doc_count_error_upper_bound": 0,"sum_other_doc_count": 0,"buckets": [{"key": 1999,"doc_count": 5},{"key": 3999,"doc_count": 1}]}}
}

若想对所有手机价格求平均值

在 Postman 中,向 ES 服务器发 GET请求 : http://127.0.0.1:9200/shopping/_search,附带JSON体如下:

{"aggs":{"price_avg":{//名称,随意起名"avg":{//求平均"field":"price"}}},"size":0
}
{"took": 14,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 6,"relation": "eq"},"max_score": null,"hits": []},"aggregations": {"price_avg": {"value": 2332.3333333333335}}
}

2-4-7 映射关系

有了索引库,等于有了数据库中的 database。

接下来就需要建索引库(index)中的映射了,类似于数据库(database)中的表结构(table)。

创建数据库表需要设置字段名称,类型,长度,约束等;索引库也一样,需要知道这个类型下有哪些字段,每个字段有哪些约束信息,这就叫做映射(mapping)。

# PUT http://127.0.0.1:9200/user

返回结果:

{"acknowledged": true,"shards_acknowledged": true,"index": "user"
}

创建映射

# PUT http://127.0.0.1:9200/user/_mapping{"properties": {"name":{"type": "text","index": true},"sex":{"type": "keyword","index": true},"tel":{"type": "keyword","index": false}}
}

返回结果如下:

{"acknowledged": true
}

查询映射

#GET http://127.0.0.1:9200/user/_mapping

返回结果如下:

{"user": {"mappings": {"properties": {"name": {"type": "text"},"sex": {"type": "keyword"},"tel": {"type": "keyword","index": false}}}}
}

增加数据

#PUT http://127.0.0.1:9200/user/_create/1001
{"name":"小米","sex":"男的","tel":"1111"
}

返回结果如下:

{"_index": "user","_type": "_doc","_id": "1001","_version": 1,"result": "created","_shards": {"total": 2,"successful": 1,"failed": 0},"_seq_no": 0,"_primary_term": 1
}

查找name含有”小“数据:

#GET http://127.0.0.1:9200/user/_search
{"query":{"match":{"name":"小"}}
}

返回结果如下

{"took": 495,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 1,"relation": "eq"},"max_score": 0.2876821,"hits": [{"_index": "user","_type": "_doc","_id": "1001","_score": 0.2876821,"_source": {"name": "小米","sex": "男的","tel": "1111"}}]}
}

查找sex含有”男“数据:

#GET http://127.0.0.1:9200/user/_search
{"query":{"match":{"sex":"男"}}
}

返回结果如下:

{"took": 1,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 0,"relation": "eq"},"max_score": null,"hits": []}
}

找不想要的结果,只因创建映射时"sex"的类型为"keyword"。

"sex"只能完全为”男的“,才能得出原数据。

#GET http://127.0.0.1:9200/user/_search
{"query":{"match":{"sex":"男的"}}
}

返回结果如下:

{"took": 2,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 1,"relation": "eq"},"max_score": 0.2876821,"hits": [{"_index": "user","_type": "_doc","_id": "1001","_score": 0.2876821,"_source": {"name": "小米","sex": "男的","tel": "1111"}}]}
}

查询电话

# GET http://127.0.0.1:9200/user/_search
{"query":{"match":{"tel":"11"}}
}

返回结果如下:

{"error": {"root_cause": [{"type": "query_shard_exception","reason": "failed to create query: Cannot search on field [tel] since it is not indexed.","index_uuid": "ivLnMfQKROS7Skb2MTFOew","index": "user"}],"type": "search_phase_execution_exception","reason": "all shards failed","phase": "query","grouped": true,"failed_shards": [{"shard": 0,"index": "user","node": "4P7dIRfXSbezE5JTiuylew","reason": {"type": "query_shard_exception","reason": "failed to create query: Cannot search on field [tel] since it is not indexed.","index_uuid": "ivLnMfQKROS7Skb2MTFOew","index": "user","caused_by": {"type": "illegal_argument_exception","reason": "Cannot search on field [tel] since it is not indexed."}}}]},"status": 400
}

报错只因创建映射时"tel"的"index"为false。

2-5 JavaAPI索引

2-5-1 环境准备

添加依赖:

<dependencies><dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>7.8.0</version></dependency><!-- elasticsearch 的客户端 --><dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.8.0</version></dependency><!-- elasticsearch 依赖 2.x 的 log4j --><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-api</artifactId><version>2.8.2</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-core</artifactId><version>2.8.2</version></dependency><dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId><version>2.9.9</version></dependency><!-- junit 单元测试 --><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency>
</dependencies>

HelloElasticsearch

import java.io.IOException;import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;public class HelloElasticsearch {public static void main(String[] args) throws IOException {// 创建客户端对象RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));
//        ...System.out.println(client);// 关闭客户端连接client.close();}
}

2-5-2 创建索引

import org.apache.http.HttpHost;
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;import java.io.IOException;public class CreateIndex {public static void main(String[] args) throws IOException {// 创建客户端对象RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));// 创建索引 - 请求对象CreateIndexRequest request = new CreateIndexRequest("user2");// 发送请求,获取响应CreateIndexResponse response = client.indices().create(request,RequestOptions.DEFAULT);boolean acknowledged = response.isAcknowledged();// 响应状态System.out.println("操作状态 = " + acknowledged);// 关闭客户端连接client.close();}}后台打印:
四月 09, 2021 2:12:08 下午 org.elasticsearch.client.RestClient logResponse
警告: request [PUT http://localhost:9200/user2?master_timeout=30s&include_type_name=true&timeout=30s] returned 1 warnings: [299 Elasticsearch-7.8.0-757314695644ea9a1dc2fecd26d1a43856725e65 "[types removal] Using include_type_name in create index requests is deprecated. The parameter will be removed in the next major version."]
操作状态 = trueProcess finished with exit code 0

2-5-2 查询索引

import org.apache.http.HttpHost;import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.client.indices.GetIndexResponse;import java.io.IOException;public class SearchIndex {public static void main(String[] args) throws IOException {// 创建客户端对象RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));// 查询索引 - 请求对象GetIndexRequest request = new GetIndexRequest("user2");// 发送请求,获取响应GetIndexResponse response = client.indices().get(request,RequestOptions.DEFAULT);System.out.println("aliases:"+response.getAliases());System.out.println("mappings:"+response.getMappings());System.out.println("settings:"+response.getSettings());client.close();}
}后台打印:
aliases:{user2=[]}
mappings:{user2=org.elasticsearch.cluster.metadata.MappingMetadata@ad700514}
settings:{user2={"index.creation_date":"1617948726976","index.number_of_replicas":"1","index.number_of_shards":"1","index.provided_name":"user2","index.uuid":"UGZ1ntcySnK6hWyP2qoVpQ","index.version.created":"7080099"}}Process finished with exit code 0

2-5-3 删除索引

import org.apache.http.HttpHost;
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;
import org.elasticsearch.action.support.master.AcknowledgedResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;import java.io.IOException;public class DeleteIndex {public static void main(String[] args) throws IOException {RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));// 删除索引 - 请求对象DeleteIndexRequest request = new DeleteIndexRequest("user2");// 发送请求,获取响应AcknowledgedResponse response = client.indices().delete(request,RequestOptions.DEFAULT);// 操作结果System.out.println("操作结果 : " + response.isAcknowledged());client.close();}
}后台打印:
操作结果 : true
Process finished with exit code 0

2-6 JavaAPI 文档

上文由于频繁使用以下连接Elasticsearch和关闭它的代码,于是个人对它进行重构。

重构后的代码:

import org.elasticsearch.client.RestHighLevelClient;public interface ElasticsearchTask {void doSomething(RestHighLevelClient client) throws Exception;}
public class ConnectElasticsearch{public static void connect(ElasticsearchTask task){// 创建客户端对象RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));try {task.doSomething(client);// 关闭客户端连接client.close();} catch (Exception e) {e.printStackTrace();}}
}

接下来,如果想让Elasticsearch完成一些操作,就编写一个lambda式即可。

public class SomeClass {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {//do something});}
}

2-6-1 创建索引

import com.fasterxml.jackson.databind.ObjectMapper;
import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.model.User;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.common.xcontent.XContentType;public class InsertDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {// 新增文档 - 请求对象IndexRequest request = new IndexRequest();// 设置索引及唯一性标识request.index("user").id("1001");// 创建数据对象User user = new User();user.setName("zhangsan");user.setAge(30);user.setSex("男");ObjectMapper objectMapper = new ObjectMapper();String productJson = objectMapper.writeValueAsString(user);// 添加文档数据,数据格式为 JSON 格式request.source(productJson, XContentType.JSON);// 客户端发送请求,获取响应对象IndexResponse response = client.index(request, RequestOptions.DEFAULT);3.打印结果信息System.out.println("_index:" + response.getIndex());System.out.println("_id:" + response.getId());System.out.println("_result:" + response.getResult());});}
}后台打印:
_index:user
_id:1001
_result:UPDATED

2-6-2 修改索引

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.common.xcontent.XContentType;public class UpdateDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {// 修改文档 - 请求对象UpdateRequest request = new UpdateRequest();// 配置修改参数request.index("user").id("1001");// 设置请求体,对数据进行修改request.doc(XContentType.JSON, "sex", "女");// 客户端发送请求,获取响应对象UpdateResponse response = client.update(request, RequestOptions.DEFAULT);System.out.println("_index:" + response.getIndex());System.out.println("_id:" + response.getId());System.out.println("_result:" + response.getResult());});}}后台打印:
_index:user
_id:1001
_result:UPDATED

2-6-3 查询索引

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.client.RequestOptions;public class GetDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {//1.创建请求对象GetRequest request = new GetRequest().index("user").id("1001");//2.客户端发送请求,获取响应对象GetResponse response = client.get(request, RequestOptions.DEFAULT);3.打印结果信息System.out.println("_index:" + response.getIndex());System.out.println("_type:" + response.getType());System.out.println("_id:" + response.getId());System.out.println("source:" + response.getSourceAsString());});}
}后台打印:
_index:user
_type:_doc
_id:1001
source:{"name":"zhangsan","age":30,"sex":"男"}

2-6-4 删除索引

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.client.RequestOptions;public class DeleteDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {//创建请求对象DeleteRequest request = new DeleteRequest().index("user").id("1001");//客户端发送请求,获取响应对象DeleteResponse response = client.delete(request, RequestOptions.DEFAULT);//打印信息System.out.println(response.toString());});}
}后台打印:
DeleteResponse[index=user,type=_doc,id=1001,version=16,result=deleted,shards=ShardInfo{total=2, successful=1, failures=[]}]

2-6-5 批量新增

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.common.xcontent.XContentType;public class BatchInsertDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {//创建批量新增请求对象BulkRequest request = new BulkRequest();request.add(newIndexRequest().index("user").id("1001").source(XContentType.JSON, "name","zhangsan"));request.add(newIndexRequest().index("user").id("1002").source(XContentType.JSON, "name","lisi"));request.add(newIndexRequest().index("user").id("1003").source(XContentType.JSON, "name","wangwu"));//客户端发送请求,获取响应对象BulkResponse responses = client.bulk(request, RequestOptions.DEFAULT);//打印结果信息System.out.println("took:" + responses.getTook());System.out.println("items:" + responses.getItems());});}
}后台打印:
took:294ms
items:[Lorg.elasticsearch.action.bulk.BulkItemResponse;@2beee7ff

2-6-6 批量删除

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.client.RequestOptions;public class BatchDeleteDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {//创建批量删除请求对象BulkRequest request = new BulkRequest();request.add(new DeleteRequest().index("user").id("1001"));request.add(new DeleteRequest().index("user").id("1002"));request.add(new DeleteRequest().index("user").id("1003"));//客户端发送请求,获取响应对象BulkResponse responses = client.bulk(request, RequestOptions.DEFAULT);//打印结果信息System.out.println("took:" + responses.getTook());System.out.println("items:" + responses.getItems());});}
}后台打印:
took:108ms
items:[Lorg.elasticsearch.action.bulk.BulkItemResponse;@7b02881e

2-6-7 高级查询

public class BatchInsertDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {//创建批量新增请求对象BulkRequest request = new BulkRequest();request.add(new IndexRequest().index("user").id("1001").source(XContentType.JSON, "name", "zhangsan", "age", "10", "sex","女"));request.add(new IndexRequest().index("user").id("1002").source(XContentType.JSON, "name", "lisi", "age", "30", "sex","女"));request.add(new IndexRequest().index("user").id("1003").source(XContentType.JSON, "name", "wangwu1", "age", "40", "sex","男"));request.add(new IndexRequest().index("user").id("1004").source(XContentType.JSON, "name", "wangwu2", "age", "20", "sex","女"));request.add(new IndexRequest().index("user").id("1005").source(XContentType.JSON, "name", "wangwu3", "age", "50", "sex","男"));request.add(new IndexRequest().index("user").id("1006").source(XContentType.JSON, "name", "wangwu4", "age", "20", "sex","男"));//客户端发送请求,获取响应对象BulkResponse responses = client.bulk(request, RequestOptions.DEFAULT);//打印结果信息System.out.println("took:" + responses.getTook());System.out.println("items:" + responses.getItems());});}
}后台打印:
took:168ms
items:[Lorg.elasticsearch.action.bulk.BulkItemResponse;@2beee7ff

查询所有索引数据

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;public class QueryDoc {public static void main(String[] args) {ConnectElasticsearch.connect(client -> {// 创建搜索请求对象SearchRequest request = new SearchRequest();request.indices("user");// 构建查询的请求体SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();// 查询所有数据sourceBuilder.query(QueryBuilders.matchAllQuery());request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 查询匹配SearchHits hits = response.getHits();System.out.println("took:" + response.getTook());System.out.println("timeout:" + response.isTimedOut());System.out.println("total:" + hits.getTotalHits());System.out.println("MaxScore:" + hits.getMaxScore());System.out.println("hits========>>");for (SearchHit hit : hits) {//输出每条查询的结果信息System.out.println(hit.getSourceAsString());}System.out.println("<<========");});}}后台打印:
took:2ms
timeout:false
total:6 hits
MaxScore:1.0
hits========>>
{"name":"zhangsan","age":"10","sex":"女"}
{"name":"lisi","age":"30","sex":"女"}
{"name":"wangwu1","age":"40","sex":"男"}
{"name":"wangwu2","age":"20","sex":"女"}
{"name":"wangwu3","age":"50","sex":"男"}
{"name":"wangwu4","age":"20","sex":"男"}
<<========Process finished with exit code 0

条件查询

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;public class QueryDoc {public static final ElasticsearchTask SEARCH_BY_CONDITION = client -> {// 创建搜索请求对象SearchRequest request = new SearchRequest();request.indices("user");// 构建查询的请求体SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.query(QueryBuilders.termQuery("age", "30"));request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 查询匹配SearchHits hits = response.getHits();System.out.println("took:" + response.getTook());System.out.println("timeout:" + response.isTimedOut());System.out.println("total:" + hits.getTotalHits());System.out.println("MaxScore:" + hits.getMaxScore());System.out.println("hits========>>");for (SearchHit hit : hits) {//输出每条查询的结果信息System.out.println(hit.getSourceAsString());}System.out.println("<<========");};public static void main(String[] args) {ConnectElasticsearch.connect(SEARCH_BY_CONDITION);}
}后台打印:
took:1ms
timeout:false
total:1 hits
MaxScore:1.0
hits========>>
{"name":"lisi","age":"30","sex":"女"}
<<========

分页查询

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;public class QueryDoc {public static final ElasticsearchTask SEARCH_BY_PAGING = client -> {// 创建搜索请求对象SearchRequest request = new SearchRequest();request.indices("user");// 构建查询的请求体SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.query(QueryBuilders.matchAllQuery());// 分页查询// 当前页其实索引(第一条数据的顺序号), fromsourceBuilder.from(0);// 每页显示多少条 sizesourceBuilder.size(2);request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 查询匹配SearchHits hits = response.getHits();System.out.println("took:" + response.getTook());System.out.println("timeout:" + response.isTimedOut());System.out.println("total:" + hits.getTotalHits());System.out.println("MaxScore:" + hits.getMaxScore());System.out.println("hits========>>");for (SearchHit hit : hits) {//输出每条查询的结果信息System.out.println(hit.getSourceAsString());}System.out.println("<<========");};public static void main(String[] args) {ConnectElasticsearch.connect(SEARCH_BY_CONDITION);}}后台打印:
took:1ms
timeout:false
total:6 hits
MaxScore:1.0
hits========>>
{"name":"zhangsan","age":"10","sex":"女"}
{"name":"lisi","age":"30","sex":"女"}
<<========

查询排序

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;public class QueryDoc {public static final ElasticsearchTask SEARCH_WITH_ORDER = client -> {// 创建搜索请求对象SearchRequest request = new SearchRequest();request.indices("user");// 构建查询的请求体SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.query(QueryBuilders.matchAllQuery());// 排序sourceBuilder.sort("age", SortOrder.ASC);request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 查询匹配SearchHits hits = response.getHits();System.out.println("took:" + response.getTook());System.out.println("timeout:" + response.isTimedOut());System.out.println("total:" + hits.getTotalHits());System.out.println("MaxScore:" + hits.getMaxScore());System.out.println("hits========>>");for (SearchHit hit : hits) {//输出每条查询的结果信息System.out.println(hit.getSourceAsString());}System.out.println("<<========");};public static void main(String[] args) {ConnectElasticsearch.connect(SEARCH_WITH_ORDER);}}后台打印:
took:1ms
timeout:false
total:6 hits
MaxScore:NaN
hits========>>
{"name":"zhangsan","age":"10","sex":"女"}
{"name":"wangwu2","age":"20","sex":"女"}
{"name":"wangwu4","age":"20","sex":"男"}
{"name":"lisi","age":"30","sex":"女"}
{"name":"wangwu1","age":"40","sex":"男"}
{"name":"wangwu3","age":"50","sex":"男"}
<<========

组合查询

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;public class QueryDoc {public static final ElasticsearchTask SEARCH_BY_BOOL_CONDITION = client -> {// 创建搜索请求对象SearchRequest request = new SearchRequest();request.indices("user");// 构建查询的请求体SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();// 必须包含boolQueryBuilder.must(QueryBuilders.matchQuery("age", "30"));// 一定不含boolQueryBuilder.mustNot(QueryBuilders.matchQuery("name", "zhangsan"));// 可能包含boolQueryBuilder.should(QueryBuilders.matchQuery("sex", "男"));sourceBuilder.query(boolQueryBuilder);request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 查询匹配SearchHits hits = response.getHits();System.out.println("took:" + response.getTook());System.out.println("timeout:" + response.isTimedOut());System.out.println("total:" + hits.getTotalHits());System.out.println("MaxScore:" + hits.getMaxScore());System.out.println("hits========>>");for (SearchHit hit : hits) {//输出每条查询的结果信息System.out.println(hit.getSourceAsString());}System.out.println("<<========");};public static void main(String[] args) {ConnectElasticsearch.connect(SEARCH_BY_BOOL_CONDITION);}
}后台打印:
took:28ms
timeout:false
total:1 hits
MaxScore:1.0
hits========>>
{"name":"lisi","age":"30","sex":"女"}
<<========Process finished with exit code 0

范围查询

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.RangeQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;public class QueryDoc {public static final ElasticsearchTask SEARCH_BY_RANGE = client -> {// 创建搜索请求对象SearchRequest request = new SearchRequest();request.indices("user");// 构建查询的请求体SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();RangeQueryBuilder rangeQuery = QueryBuilders.rangeQuery("age");// 大于等于//rangeQuery.gte("30");// 小于等于rangeQuery.lte("40");sourceBuilder.query(rangeQuery);request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 查询匹配SearchHits hits = response.getHits();System.out.println("took:" + response.getTook());System.out.println("timeout:" + response.isTimedOut());System.out.println("total:" + hits.getTotalHits());System.out.println("MaxScore:" + hits.getMaxScore());System.out.println("hits========>>");for (SearchHit hit : hits) {//输出每条查询的结果信息System.out.println(hit.getSourceAsString());}System.out.println("<<========");};public static void main(String[] args) {ConnectElasticsearch.connect(SEARCH_BY_RANGE);}}后台打印:
took:1ms
timeout:false
total:5 hits
MaxScore:1.0
hits========>>
{"name":"zhangsan","age":"10","sex":"女"}
{"name":"lisi","age":"30","sex":"女"}
{"name":"wangwu1","age":"40","sex":"男"}
{"name":"wangwu2","age":"20","sex":"女"}
{"name":"wangwu4","age":"20","sex":"男"}
<<========Process finished with exit code 0

模糊查询

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.common.unit.Fuzziness;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.RangeQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;public class QueryDoc {public static final ElasticsearchTask SEARCH_BY_FUZZY_CONDITION = client -> {// 创建搜索请求对象SearchRequest request = new SearchRequest();request.indices("user");// 构建查询的请求体SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.query(QueryBuilders.fuzzyQuery("name","wangwu").fuzziness(Fuzziness.ONE));request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 查询匹配SearchHits hits = response.getHits();System.out.println("took:" + response.getTook());System.out.println("timeout:" + response.isTimedOut());System.out.println("total:" + hits.getTotalHits());System.out.println("MaxScore:" + hits.getMaxScore());System.out.println("hits========>>");for (SearchHit hit : hits) {//输出每条查询的结果信息System.out.println(hit.getSourceAsString());}System.out.println("<<========");};public static void main(String[] args) {
//        ConnectElasticsearch.connect(SEARCH_ALL);
//        ConnectElasticsearch.connect(SEARCH_BY_CONDITION);
//        ConnectElasticsearch.connect(SEARCH_BY_PAGING);
//        ConnectElasticsearch.connect(SEARCH_WITH_ORDER);
//        ConnectElasticsearch.connect(SEARCH_BY_BOOL_CONDITION);
//        ConnectElasticsearch.connect(SEARCH_BY_RANGE);ConnectElasticsearch.connect(SEARCH_BY_FUZZY_CONDITION);}}
后台打印
took:152ms
timeout:false
total:4 hits
MaxScore:1.2837042
hits========>>
{"name":"wangwu1","age":"40","sex":"男"}
{"name":"wangwu2","age":"20","sex":"女"}
{"name":"wangwu3","age":"50","sex":"男"}
{"name":"wangwu4","age":"20","sex":"男"}
<<========Process finished with exit code 0

最大值查询

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.common.unit.Fuzziness;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.RangeQueryBuilder;
import org.elasticsearch.index.query.TermsQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightField;
import org.elasticsearch.search.sort.SortOrder;import java.util.Map;public class QueryDoc {public static final ElasticsearchTask SEARCH_WITH_MAX = client -> {// 高亮查询SearchRequest request = new SearchRequest().indices("user");SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.aggregation(AggregationBuilders.max("maxAge").field("age"));//设置请求体request.source(sourceBuilder);//3.客户端发送请求,获取响应对象SearchResponse response = client.search(request, RequestOptions.DEFAULT);//4.打印响应结果SearchHits hits = response.getHits();System.out.println(response);};public static void main(String[] args) {ConnectElasticsearch.connect(SEARCH_WITH_MAX);}}后台打印
{"took":16,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":{"value":6,"relation":"eq"},"max_score":1.0,"hits":[{"_index":"user","_type":"_doc","_id":"1001","_score":1.0,"_source":{"name":"zhangsan","age":"10","sex":"女"}},{"_index":"user","_type":"_doc","_id":"1002","_score":1.0,"_source":{"name":"lisi","age":"30","sex":"女"}},{"_index":"user","_type":"_doc","_id":"1003","_score":1.0,"_source":{"name":"wangwu1","age":"40","sex":"男"}},{"_index":"user","_type":"_doc","_id":"1004","_score":1.0,"_source":{"name":"wangwu2","age":"20","sex":"女"}},{"_index":"user","_type":"_doc","_id":"1005","_score":1.0,"_source":{"name":"wangwu3","age":"50","sex":"男"}},{"_index":"user","_type":"_doc","_id":"1006","_score":1.0,"_source":{"name":"wangwu4","age":"20","sex":"男"}}]},"aggregations":{"max#maxAge":{"value":50.0}}}Process finished with exit code 0

分组查询

import com.lun.elasticsearch.hello.ConnectElasticsearch;
import com.lun.elasticsearch.hello.ElasticsearchTask;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.common.unit.Fuzziness;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.RangeQueryBuilder;
import org.elasticsearch.index.query.TermsQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightField;
import org.elasticsearch.search.sort.SortOrder;import java.util.Map;public class QueryDoc {public static final ElasticsearchTask SEARCH_WITH_GROUP = client -> {SearchRequest request = new SearchRequest().indices("user");SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.aggregation(AggregationBuilders.terms("age_groupby").field("age"));//设置请求体request.source(sourceBuilder);//3.客户端发送请求,获取响应对象SearchResponse response = client.search(request, RequestOptions.DEFAULT);//4.打印响应结果SearchHits hits = response.getHits();System.out.println(response);};public static void main(String[] args) {ConnectElasticsearch.connect(SEARCH_WITH_GROUP);}}
后台打印
{"took":10,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":{"value":6,"relation":"eq"},"max_score":1.0,"hits":[{"_index":"user","_type":"_doc","_id":"1001","_score":1.0,"_source":{"name":"zhangsan","age":"10","sex":"女"}},{"_index":"user","_type":"_doc","_id":"1002","_score":1.0,"_source":{"name":"lisi","age":"30","sex":"女"}},{"_index":"user","_type":"_doc","_id":"1003","_score":1.0,"_source":{"name":"wangwu1","age":"40","sex":"男"}},{"_index":"user","_type":"_doc","_id":"1004","_score":1.0,"_source":{"name":"wangwu2","age":"20","sex":"女"}},{"_index":"user","_type":"_doc","_id":"1005","_score":1.0,"_source":{"name":"wangwu3","age":"50","sex":"男"}},{"_index":"user","_type":"_doc","_id":"1006","_score":1.0,"_source":{"name":"wangwu4","age":"20","sex":"男"}}]},"aggregations":{"lterms#age_groupby":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":20,"doc_count":2},{"key":10,"doc_count":1},{"key":30,"doc_count":1},{"key":40,"doc_count":1},{"key":50,"doc_count":1}]}}}Process finished with exit code 0


http://www.ppmy.cn/news/244077.html

相关文章

ElasticSearch介绍

Elastic Stack 介绍 if you没有听说过ElasticSearch&#xff0c;那你一定听说过ELK&#xff08;Elastic Stack&#xff09;&#xff0c;实际上ELK是三款软件的简称&#xff0c;分别是Elasticsearch、Logstash、Kibana组成&#xff0c;在发展的过程中&#xff0c;又有新成员Bea…

Elasticsearch:ES的操作语法

目录 1. Elasticsearch的环境准备2. 基本概念3. 基本操作命令3.1创建索引语法测试使用kibana创建 3.2查看索引设置3.2删除索引3.3创建映射字段3.3查看映射关系3.4字段属性详解3.4.1type3.4.2 index影响字段的索引情况。3.4.3 store 3.5 新增数据3.5.1.随机生成id3.5.2.自定义id…

ElasticSearch分布式搜索框架

目录 一. ElasticSearch背景 1.1 Elasticsearch介绍 1.2 Elasticsearch现状 1.3 Es最佳实践 二. 环境配置安装 2.1 Elasticsearch安装 2.2 配置ElasticSearch-head 2.3 配置Kibana 2.4 IK分词器依赖支持 三. ES功能使用 3.1 索引库操作 3.2 类型(type)及映射(mappi…

Elasticsearch相关 ES

Elastic 详尽文档&#xff1a;https://elasticstack.blog.csdn.net/article/details/102728604 文章目录 倒排索引分词内置的分词器IK分词器ik分词器下载地址&#xff1a;Ik有两种颗粒度的拆分IK 扩展和停用词典远程扩展IK字典1. 在Nginx中配置2.连接mysql3. 接口扩展 拼音分词…

【ElasticSearch01】ElasticSearch入门

目录 1.数据类型2.Elasticsearch是什么3.全文搜索引擎4.Elasticsearch安装5.Restful和JSON6.Postman客户端工具7.倒排索引8.Elasticsearch基本操作8.1 索引操作8.1.1 创建索引8.1.2查询索引1.查询指定索引2.查询所有索引 8.1.3删除索引 8.2 文档操作8.2.1 创建文档8.2.2 创建文…

小米9se开发版系统回刷MIUI稳定版系统

小米9se开发版系统回刷MIUI稳定版系统 第一次写博客&#xff0c;如有错误不详敬请谅解。 之前也是想要抢鲜体验MIUI11&#xff0c;毕竟是从MIUI7用到MIUI11的忠实米粉。然后就去申请了MIUI11内测版&#xff0c;结果很给力&#xff0c;直接就给通过了。然后就在众室友还在看着…

Elasticsearch ES使用总结

Elasticsearch ES 安装入门数据格式索引操作文档操作 映射操作高级查询 官方视频介绍 CSDN官网 个人博客 Elasticsearch 是一个开源的搜索引擎&#xff0c;建立在一个全文搜索引擎库 Apache Lucene™ 基础之上。 一个分布式的实时文档存储&#xff0c;每个字段可以被索引与搜…

工业无监督缺陷检测,提升缺陷检测能力,解决缺陷样品少、不平衡等问题

1. 简介 在工业生产中,质量保证是一个很重要的话题, 因此在生产中细小的缺陷需要被可靠的检出。工业异常检出旨在从正常的样本中检测异常的、有缺陷的情况。工业异常检测主要面临的挑战: 难以获取大量异常样本正常样本和异常样本差异较小异常的类型不能预先得知这些挑战使得…