群的定义
设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为独异点,若 G G G中每个元素关于 ⋅ \cdot ⋅都是可逆的,则称 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为群
由于群中结合律成立,每个元素的逆元是唯一的
若群 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩中的二元运算 ⋅ \cdot ⋅是可交换的,则称 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为可交换群,也称阿贝尔群
群的判定
定理1:设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩为半群,若
(1)有左单位元,即 ∃ e l ∈ G \exists e_l\in G ∃el∈G使 ∀ a ∈ G , e l ⋅ a = a \forall a \in G, e_l \cdot a = a ∀a∈G,el⋅a=a
(2)每个元素有左逆元,即 ∀ a ∈ G , ∃ a l ∈ G \forall a \in G, \exists a_l \in G ∀a∈G,∃al∈G,使 a l ⋅ a = e l a_l \cdot a=e_l al⋅a=el则 < G , ⋅ > \left<G, \cdot \right> ⟨G,⋅⟩是群
证明:因为 a l ∈ G a_l \in G al∈G,所以 ∃ a ′ ⋅ a l = e l \exists a^{\prime} \cdot a_l = e_l ∃a′⋅al=el,于是
a ⋅ a l = e l ⋅ ( a ⋅ a l ) = ( a ′ ⋅ a l ) ⋅ ( a ⋅ a l ) = a ′ ⋅ ( a l ⋅ a ) ⋅ a l = a ′ ⋅ e l ⋅ a l = a ′ ⋅ ( e l ⋅ a l ) = a ′ ⋅ a l = e l \begin{aligned} a \cdot a_l &=e_l\cdot \left(a \cdot a_l\right)\\ &=\left(a^{\prime} \cdot a_l \right) \cdot \left(a \cdot a_l\right)\\ &=a^{\prime} \cdot \left(a_l\cdot a\right)\cdot a_l\\ &=a^{\prime} \cdot e_l \cdot a_l \\ &=a^{\prime}\cdot\left(e_l\cdot a_l\right)\\ &=a^{\prime} \cdot a_l\\ &=e_l \end{aligned} a⋅al=el⋅(a⋅al)=(a′⋅al)⋅(a⋅al)=a′⋅(al⋅a)⋅al=a′⋅el⋅al=a′⋅(el⋅al)=a′⋅al=el
因此 a l a_l al也是 a a a的右逆元,进而 a a a可逆
∀ a ∈ G \forall a \in G ∀a∈G
a ⋅ e l = a ⋅ ( a l ⋅ a ) = ( a ⋅ a l ) ⋅ a = e l ⋅ a = a a\cdot e_l = a\cdot\left(a_l\cdot a\right) = \left(a\cdot a_l\right) \cdot a = e_l \cdot a = a a⋅el=a⋅(al⋅a)=(a⋅al)⋅a=el⋅a=a
因此 e l e_l el是单位元
因此 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群
将本定理中的左同时改成右也成立,但是一左一右不一定
定理2:设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩是半群,若 ∀ a , b ∈ G \forall a,b\in G ∀a,b∈G,方程 a ⋅ x = b a\cdot x=b a⋅x=b和 y ⋅ a = b y\cdot a=b y⋅a=b在 G G G中都有接,则 < G , ⋅ > \left<G,\cdot \right> ⟨G,⋅⟩是群
证明:
(1)取 a ∈ G a\in G a∈G设 e l e_l el为 y ⋅ a = a y\cdot a=a y⋅a=a的一个解, ∀ b ∈ G \forall b \in G ∀b∈G,令 c c c为 a ⋅ x = b a\cdot x=b a⋅x=b的一个解,则
e l ⋅ b = e l ⋅ ( a ⋅ c ) = ( e l ⋅ a ) ⋅ c = a ⋅ c = b e_l \cdot b = e_l\cdot \left(a\cdot c\right)=\left(e_l\cdot a\right) \cdot c = a\cdot c = b el⋅b=el⋅(a⋅c)=(el⋅a)⋅c=a⋅c=b
故 e l e_l el是左单位元
(2) ∀ a ∈ G \forall a \in G ∀a∈G,令 a l a_l al为 y ⋅ a = e l y\cdot a = e_l y⋅a=el的一个解,则 a l ⋅ a = e l a_l\cdot a = e_l al⋅a=el
由定理1, < G , ⋅ > \left<G,\cdot \right> ⟨G,⋅⟩是群
定理3:设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩是有限半群,若 G G G中消去律成立,则 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群
证明:
设 G = { a 1 , a 2 , ⋯ , a n } G = \left\{a_1,a_2,\cdots, a_n\right\} G={a1,a2,⋯,an}
∀ a , b ∈ G \forall a,b \in G ∀a,b∈G
作 G ′ = { a ⋅ a 1 , a ⋅ a 2 , ⋯ , a ⋅ a n } G^{\prime} = \left\{a\cdot a_1, a\cdot a_2,\cdots, a\cdot a_n\right\} G′={a⋅a1,a⋅a2,⋯,a⋅an}, G ′ ⊆ G G^{\prime} \subseteq G G′⊆G
因为消去律成立,若 i ≠ j i \neq j i=j,则 a ⋅ a i ≠ a ⋅ a j a\cdot a_i \neq a \cdot a_j a⋅ai=a⋅aj
因此 ∣ G ′ ∣ = G \left|G^{\prime} \right| = G ∣G′∣=G,则 G ′ = G G^{\prime} = G G′=G
因为 b ∈ G b \in G b∈G,有 b ∈ G p r i m e b\in G^{prime} b∈Gprime
即 ∃ k ∈ N \exists k \in \mathbb{N} ∃k∈N,使得 a ⋅ a k = b a\cdot a_k=b a⋅ak=b,所以 a k ∈ G a_k \in G ak∈G是方程 a ⋅ x = b a\cdot x=b a⋅x=b的解
同理, ∀ a , b ∈ G \forall a,b\in G ∀a,b∈G, y ⋅ a = b y\cdot a=b y⋅a=b在 G G G中有解
由定理2, < G , ⋅ > \left<G,\cdot \right> ⟨G,⋅⟩是群
群的性质
设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩是群,则
(1) ∀ a , b ∈ G , ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \forall a,b \in G, \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} ∀a,b∈G,(a⋅b)−1=b−1⋅a−1;
(2) ∀ a , b ∈ G \forall a,b\in G ∀a,b∈G,方程 a ⋅ x = b a\cdot x=b a⋅x=b和 y ⋅ a = b y\cdot a=b y⋅a=b在 G G G中有唯一解;
(3) G G G中消去律成立
证明:
(1)
因为 ( b − 1 ⋅ a − 1 ) ⋅ ( a ⋅ b ) = e \left(b^{-1}\cdot a^{-1}\right) \cdot \left(a\cdot b\right) = e (b−1⋅a−1)⋅(a⋅b)=e
并且 ( a ⋅ b ) ⋅ ( b − 1 ⋅ a − 1 ) = e \left(a\cdot b\right)\cdot \left(b^{-1}\cdot a^{-1}\right) = e (a⋅b)⋅(b−1⋅a−1)=e
所以 ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} (a⋅b)−1=b−1⋅a−1
(2) a ⋅ ( a − 1 ⋅ b ) = b a\cdot\left(a^{-1}\cdot b\right) = b a⋅(a−1⋅b)=b所以 a − 1 ⋅ b a^{-1}\cdot b a−1⋅b是方程 a ⋅ x = b a\cdot x=b a⋅x=b在 G G G中的解
若 c c c也是 a ⋅ x = b a\cdot x = b a⋅x=b在 G G G中的解,即 a ⋅ c = b a\cdot c = b a⋅c=b,则
c = e ⋅ c = ( a − 1 ⋅ a ) ⋅ c = a − 1 ⋅ ( a ⋅ c ) = a − 1 ⋅ b c = e\cdot c = \left(a^{-1}\cdot a\right)\cdot c=a^{-1}\cdot \left(a\cdot c\right) = a^{-1}\cdot b c=e⋅c=(a−1⋅a)⋅c=a−1⋅(a⋅c)=a−1⋅b
同理 y ⋅ a = b y\cdot a = b y⋅a=b在 G G G中由唯一解
(3) G G G中每个元素都是可逆的,又因为可逆元都是可约元,故 G G G中消去律成立
元素的阶
设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群, a ∈ G a\in G a∈G, a a a的整数次幂可归纳定义为:
(1) a 0 = e a^{0}=e a0=e
(2) a n + 1 = a n ⋅ a , n ∈ N a^{n+1}=a^{n} \cdot a, n\in \mathbb{N} an+1=an⋅a,n∈N
(3) a − n = ( a − 1 ) n , n ∈ I + a^{-n} = \left(a^{-1}\right)^{n} , n\in \mathbb{I}_+ a−n=(a−1)n,n∈I+
容易证明 ∀ m , n ∈ I , a m ⋅ a n = a m + n , ( a m ) n = a m n \forall m,n\in\mathbb{I}, a^{m}\cdot a^n=a^{m+n},\left(a^m\right)^n=a^{mn} ∀m,n∈I,am⋅an=am+n,(am)n=amn
定义:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群, a ∈ G a\in G a∈G,若 ∀ n ∈ I \forall n \in \mathbb{I} ∀n∈I, a n ≠ e a^{n}\neq e an=e则称 a a a的阶是无限的;
否则称使 a n = e a^{n}=e an=e的最小正整数 n n n为 a a a的阶
a a a的阶也称 a a a的周期,常用 ∣ a ∣ \left|a\right| ∣a∣表示
显然单位元使群中阶为 1 1 1的唯一元素
定理1:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩使群, a ∈ G a\in G a∈G,且 ∣ a ∣ = n \left|a\right| = n ∣a∣=n,则 a k = e a^k = e ak=e当且仅当 n ∣ k n\mid k n∣k
证明:
充分性:若 n ∣ k n\mid k n∣k,则 ∃ q ∈ I \exists q\in \mathbb{I} ∃q∈I,使 k = q n k=qn k=qn,则
a k = a q n = ( a n ) q = e q = e a^k =a^{qn} = \left(a^n\right) ^q = e^q =e ak=aqn=(an)q=eq=e
必要性:若 a k = e a^k=e ak=e,设 k = q n + r , 0 ≤ r < n k = qn + r, 0\le r < n k=qn+r,0≤r<n,则
a r = a k − q n = a k ⋅ ( a n ) − q = e ⋅ ( e ) − q = e a^r = a^{k-qn} = a^k \cdot \left(a^n\right)^{-q}=e\cdot \left(e\right)^{-q} = e ar=ak−qn=ak⋅(an)−q=e⋅(e)−q=e
但 n n n使使 a n = e a^n=e an=e的最小正整数,所以 r = 0 r=0 r=0, k = q n k=qn k=qn,故 n ∣ k n\mid k n∣k
定理2:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩使群, a ∈ G a\in G a∈G,且 ∣ a ∣ = n , k ∈ I \left|a\right|=n, k\in \mathbb{I} ∣a∣=n,k∈I
则 ∣ a k ∣ = n ( k , n ) \left|a^k\right| = \frac{n}{\left(k,n\right)} ak =(k,n)n,特别地, ∣ a − 1 ∣ = ∣ a ∣ \left|a^{-1}\right|=\left|a\right| a−1 =∣a∣
证明:设 ∣ a k ∣ = m \left|a^k\right|=m ak =m,则 a k m = e a^{km}=e akm=e,由定理1, n ∣ k m n\mid km n∣km,所以
n ( k , n ) ∣ k ( k , n ) m \frac{n}{\left(k,n\right)}\mid \frac{k}{\left(k,n\right)}m (k,n)n∣(k,n)km
而 n ( k , n ) \frac{n}{\left(k,n\right)} (k,n)n与 k ( k , n ) \frac{k}{\left(k,n\right)} (k,n)k互质,故 n ( k , n ) ∣ m \frac{n}{\left(k,n\right)}\mid m (k,n)n∣m,又因为
( a k ) n ( k , n ) = ( a n ) k ( k , n ) = e \left(a^k\right)^{\frac{n}{\left(k,n\right)}}=\left(a^n\right)^{\frac{k}{\left(k,n\right)}}=e (ak)(k,n)n=(an)(k,n)k=e
所以 m ∣ n ( k , n ) m\mid \frac{n}{\left(k,n\right)} m∣(k,n)n,而 m , n ( k , n ) ∈ I + m,\frac{n}{\left(k,n\right)}\in \mathbb{I}_+ m,(k,n)n∈I+,故 m = n ( k , n ) m=\frac{n}{\left(k,n\right)} m=(k,n)n
定理3:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为有限群, ∣ G ∣ = n \left|G\right|=n ∣G∣=n,则 ∀ a ∈ G , ∣ a ∣ ≤ n \forall a\in G,\left|a\right|\le n ∀a∈G,∣a∣≤n
证明: ∀ a ∈ G , a , a 2 , ⋯ , a n + 1 \forall a\in G, a,a^2,\cdots, a^{n+1} ∀a∈G,a,a2,⋯,an+1中必有两个相同元,设为 a i = a j a^{i}=a^{j} ai=aj,其中 1 ≤ i < j ≤ n + 1 1\le i < j \le n+1 1≤i<j≤n+1,
则 a j − i = e a^{j-i}=e aj−i=e,故 ∣ a ∣ ≤ j − i ≤ n \left|a\right|\le j-i\le n ∣a∣≤j−i≤n
参考:
离散数学(刘玉珍)