群的定义及性质

news/2024/12/29 11:40:03/

群的定义

< G , ⋅ > \left<G,\cdot\right> G,为独异点,若 G G G中每个元素关于 ⋅ \cdot 都是可逆的,则称 < G , ⋅ > \left<G,\cdot\right> G,
由于群中结合律成立,每个元素的逆元是唯一的

若群 < G , ⋅ > \left<G,\cdot\right> G,中的二元运算 ⋅ \cdot 是可交换的,则称 < G , ⋅ > \left<G,\cdot\right> G,可交换群,也称阿贝尔群

群的判定

定理1:设 < G , ⋅ > \left<G, \cdot\right> G,为半群,若
(1)有左单位元,即 ∃ e l ∈ G \exists e_l\in G elG使 ∀ a ∈ G , e l ⋅ a = a \forall a \in G, e_l \cdot a = a aG,ela=a
(2)每个元素有左逆元,即 ∀ a ∈ G , ∃ a l ∈ G \forall a \in G, \exists a_l \in G aG,alG,使 a l ⋅ a = e l a_l \cdot a=e_l ala=el < G , ⋅ > \left<G, \cdot \right> G,是群

证明:因为 a l ∈ G a_l \in G alG,所以 ∃ a ′ ⋅ a l = e l \exists a^{\prime} \cdot a_l = e_l aal=el,于是
a ⋅ a l = e l ⋅ ( a ⋅ a l ) = ( a ′ ⋅ a l ) ⋅ ( a ⋅ a l ) = a ′ ⋅ ( a l ⋅ a ) ⋅ a l = a ′ ⋅ e l ⋅ a l = a ′ ⋅ ( e l ⋅ a l ) = a ′ ⋅ a l = e l \begin{aligned} a \cdot a_l &=e_l\cdot \left(a \cdot a_l\right)\\ &=\left(a^{\prime} \cdot a_l \right) \cdot \left(a \cdot a_l\right)\\ &=a^{\prime} \cdot \left(a_l\cdot a\right)\cdot a_l\\ &=a^{\prime} \cdot e_l \cdot a_l \\ &=a^{\prime}\cdot\left(e_l\cdot a_l\right)\\ &=a^{\prime} \cdot a_l\\ &=e_l \end{aligned} aal=el(aal)=(aal)(aal)=a(ala)al=aelal=a(elal)=aal=el
因此 a l a_l al也是 a a a的右逆元,进而 a a a可逆

∀ a ∈ G \forall a \in G aG
a ⋅ e l = a ⋅ ( a l ⋅ a ) = ( a ⋅ a l ) ⋅ a = e l ⋅ a = a a\cdot e_l = a\cdot\left(a_l\cdot a\right) = \left(a\cdot a_l\right) \cdot a = e_l \cdot a = a ael=a(ala)=(aal)a=ela=a
因此 e l e_l el是单位元

因此 < G , ⋅ > \left<G,\cdot\right> G,是群

将本定理中的左同时改成右也成立,但是一左一右不一定

定理2:设 < G , ⋅ > \left<G, \cdot\right> G,是半群,若 ∀ a , b ∈ G \forall a,b\in G a,bG,方程 a ⋅ x = b a\cdot x=b ax=b y ⋅ a = b y\cdot a=b ya=b G G G中都有接,则 < G , ⋅ > \left<G,\cdot \right> G,是群

证明:
(1)取 a ∈ G a\in G aG e l e_l el y ⋅ a = a y\cdot a=a ya=a的一个解, ∀ b ∈ G \forall b \in G bG,令 c c c a ⋅ x = b a\cdot x=b ax=b的一个解,则
e l ⋅ b = e l ⋅ ( a ⋅ c ) = ( e l ⋅ a ) ⋅ c = a ⋅ c = b e_l \cdot b = e_l\cdot \left(a\cdot c\right)=\left(e_l\cdot a\right) \cdot c = a\cdot c = b elb=el(ac)=(ela)c=ac=b
e l e_l el是左单位元
(2) ∀ a ∈ G \forall a \in G aG,令 a l a_l al y ⋅ a = e l y\cdot a = e_l ya=el的一个解,则 a l ⋅ a = e l a_l\cdot a = e_l ala=el
由定理1, < G , ⋅ > \left<G,\cdot \right> G,是群

定理3:设 < G , ⋅ > \left<G, \cdot\right> G,是有限半群,若 G G G中消去律成立,则 < G , ⋅ > \left<G,\cdot\right> G,是群

证明:
G = { a 1 , a 2 , ⋯ , a n } G = \left\{a_1,a_2,\cdots, a_n\right\} G={a1,a2,,an}
∀ a , b ∈ G \forall a,b \in G a,bG
G ′ = { a ⋅ a 1 , a ⋅ a 2 , ⋯ , a ⋅ a n } G^{\prime} = \left\{a\cdot a_1, a\cdot a_2,\cdots, a\cdot a_n\right\} G={aa1,aa2,,aan} G ′ ⊆ G G^{\prime} \subseteq G GG
因为消去律成立,若 i ≠ j i \neq j i=j,则 a ⋅ a i ≠ a ⋅ a j a\cdot a_i \neq a \cdot a_j aai=aaj
因此 ∣ G ′ ∣ = G \left|G^{\prime} \right| = G G=G,则 G ′ = G G^{\prime} = G G=G
因为 b ∈ G b \in G bG,有 b ∈ G p r i m e b\in G^{prime} bGprime
∃ k ∈ N \exists k \in \mathbb{N} kN,使得 a ⋅ a k = b a\cdot a_k=b aak=b,所以 a k ∈ G a_k \in G akG是方程 a ⋅ x = b a\cdot x=b ax=b的解
同理, ∀ a , b ∈ G \forall a,b\in G a,bG y ⋅ a = b y\cdot a=b ya=b G G G中有解
由定理2, < G , ⋅ > \left<G,\cdot \right> G,是群

群的性质

< G , ⋅ > \left<G, \cdot\right> G,是群,则
(1) ∀ a , b ∈ G , ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \forall a,b \in G, \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} a,bG,(ab)1=b1a1
(2) ∀ a , b ∈ G \forall a,b\in G a,bG,方程 a ⋅ x = b a\cdot x=b ax=b y ⋅ a = b y\cdot a=b ya=b G G G中有唯一解;
(3) G G G中消去律成立

证明:
(1)
因为 ( b − 1 ⋅ a − 1 ) ⋅ ( a ⋅ b ) = e \left(b^{-1}\cdot a^{-1}\right) \cdot \left(a\cdot b\right) = e (b1a1)(ab)=e
并且 ( a ⋅ b ) ⋅ ( b − 1 ⋅ a − 1 ) = e \left(a\cdot b\right)\cdot \left(b^{-1}\cdot a^{-1}\right) = e (ab)(b1a1)=e
所以 ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} (ab)1=b1a1
(2) a ⋅ ( a − 1 ⋅ b ) = b a\cdot\left(a^{-1}\cdot b\right) = b a(a1b)=b所以 a − 1 ⋅ b a^{-1}\cdot b a1b是方程 a ⋅ x = b a\cdot x=b ax=b G G G中的解
c c c也是 a ⋅ x = b a\cdot x = b ax=b G G G中的解,即 a ⋅ c = b a\cdot c = b ac=b,则
c = e ⋅ c = ( a − 1 ⋅ a ) ⋅ c = a − 1 ⋅ ( a ⋅ c ) = a − 1 ⋅ b c = e\cdot c = \left(a^{-1}\cdot a\right)\cdot c=a^{-1}\cdot \left(a\cdot c\right) = a^{-1}\cdot b c=ec=(a1a)c=a1(ac)=a1b
同理 y ⋅ a = b y\cdot a = b ya=b G G G中由唯一解

(3) G G G中每个元素都是可逆的,又因为可逆元都是可约元,故 G G G中消去律成立

元素的阶

< G , ⋅ > \left<G,\cdot\right> G,是群, a ∈ G a\in G aG a a a的整数次幂可归纳定义为:
(1) a 0 = e a^{0}=e a0=e
(2) a n + 1 = a n ⋅ a , n ∈ N a^{n+1}=a^{n} \cdot a, n\in \mathbb{N} an+1=ana,nN
(3) a − n = ( a − 1 ) n , n ∈ I + a^{-n} = \left(a^{-1}\right)^{n} , n\in \mathbb{I}_+ an=(a1)n,nI+

容易证明 ∀ m , n ∈ I , a m ⋅ a n = a m + n , ( a m ) n = a m n \forall m,n\in\mathbb{I}, a^{m}\cdot a^n=a^{m+n},\left(a^m\right)^n=a^{mn} m,nI,aman=am+n,(am)n=amn

定义:设 < G , ⋅ > \left<G,\cdot\right> G,是群, a ∈ G a\in G aG,若 ∀ n ∈ I \forall n \in \mathbb{I} nI a n ≠ e a^{n}\neq e an=e则称 a a a的阶是无限的;
否则称使 a n = e a^{n}=e an=e的最小正整数 n n n a a a
a a a的阶也称 a a a周期,常用 ∣ a ∣ \left|a\right| a表示

显然单位元使群中阶为 1 1 1的唯一元素

定理1:设 < G , ⋅ > \left<G,\cdot\right> G,使群, a ∈ G a\in G aG,且 ∣ a ∣ = n \left|a\right| = n a=n,则 a k = e a^k = e ak=e当且仅当 n ∣ k n\mid k nk
证明:
充分性:若 n ∣ k n\mid k nk,则 ∃ q ∈ I \exists q\in \mathbb{I} qI,使 k = q n k=qn k=qn,则
a k = a q n = ( a n ) q = e q = e a^k =a^{qn} = \left(a^n\right) ^q = e^q =e ak=aqn=(an)q=eq=e
必要性:若 a k = e a^k=e ak=e,设 k = q n + r , 0 ≤ r < n k = qn + r, 0\le r < n k=qn+r0r<n,则
a r = a k − q n = a k ⋅ ( a n ) − q = e ⋅ ( e ) − q = e a^r = a^{k-qn} = a^k \cdot \left(a^n\right)^{-q}=e\cdot \left(e\right)^{-q} = e ar=akqn=ak(an)q=e(e)q=e
n n n使使 a n = e a^n=e an=e的最小正整数,所以 r = 0 r=0 r=0 k = q n k=qn k=qn,故 n ∣ k n\mid k nk

定理2:设 < G , ⋅ > \left<G,\cdot\right> G,使群, a ∈ G a\in G aG,且 ∣ a ∣ = n , k ∈ I \left|a\right|=n, k\in \mathbb{I} a=n,kI
∣ a k ∣ = n ( k , n ) \left|a^k\right| = \frac{n}{\left(k,n\right)} ak =(k,n)n,特别地, ∣ a − 1 ∣ = ∣ a ∣ \left|a^{-1}\right|=\left|a\right| a1 =a

证明:设 ∣ a k ∣ = m \left|a^k\right|=m ak =m,则 a k m = e a^{km}=e akm=e,由定理1, n ∣ k m n\mid km nkm,所以
n ( k , n ) ∣ k ( k , n ) m \frac{n}{\left(k,n\right)}\mid \frac{k}{\left(k,n\right)}m (k,n)n(k,n)km
n ( k , n ) \frac{n}{\left(k,n\right)} (k,n)n k ( k , n ) \frac{k}{\left(k,n\right)} (k,n)k互质,故 n ( k , n ) ∣ m \frac{n}{\left(k,n\right)}\mid m (k,n)nm,又因为
( a k ) n ( k , n ) = ( a n ) k ( k , n ) = e \left(a^k\right)^{\frac{n}{\left(k,n\right)}}=\left(a^n\right)^{\frac{k}{\left(k,n\right)}}=e (ak)(k,n)n=(an)(k,n)k=e
所以 m ∣ n ( k , n ) m\mid \frac{n}{\left(k,n\right)} m(k,n)n,而 m , n ( k , n ) ∈ I + m,\frac{n}{\left(k,n\right)}\in \mathbb{I}_+ m,(k,n)nI+,故 m = n ( k , n ) m=\frac{n}{\left(k,n\right)} m=(k,n)n

定理3:设 < G , ⋅ > \left<G,\cdot\right> G,为有限群, ∣ G ∣ = n \left|G\right|=n G=n,则 ∀ a ∈ G , ∣ a ∣ ≤ n \forall a\in G,\left|a\right|\le n aG,an
证明: ∀ a ∈ G , a , a 2 , ⋯ , a n + 1 \forall a\in G, a,a^2,\cdots, a^{n+1} aG,a,a2,,an+1中必有两个相同元,设为 a i = a j a^{i}=a^{j} ai=aj,其中 1 ≤ i < j ≤ n + 1 1\le i < j \le n+1 1i<jn+1,
a j − i = e a^{j-i}=e aji=e,故 ∣ a ∣ ≤ j − i ≤ n \left|a\right|\le j-i\le n ajin

参考:
离散数学(刘玉珍)


http://www.ppmy.cn/news/222115.html

相关文章

相机镜头选取

1、物距、像距、焦距之间的关系 认为物距远远大于像距和焦距&#xff0c;近似认为焦距 f 等于相距 v&#xff0c;都以焦距 f 作为计算 2、镜头的焦距(f )、物距&#xff08;u&#xff09;、CCD芯片尺寸、物体尺寸、CCD像元尺寸与设计要求分辨率&#xff08;设计要达到的指标&a…

工业定焦镜头的选型公式

工业镜头的焦距(f mm)可以根据FOV(视场), WD(工作距离) 和CCD芯片尺寸计算出来: FOV视场指被摄取物体的大小&#xff0c;视场的大小是以镜头至被摄取物体距离(WD)&#xff0c;镜头焦距(F)及CCD芯片尺寸确定的。 镜头的焦距&#xff0c;视场大小、工作距离、光学倍率计算如下: 焦…

镜头调焦

为什么要对焦&#xff1f; 通过对焦可以告诉相机哪里是最清晰的&#xff0c;从而进一步决定照片的景深。对焦的位置决定了画面清晰的区域&#xff0c;也就是指焦平面的位置。手动对焦时&#xff0c;在我们选定焦点和焦平面后&#xff0c;通过调整镜组之间距离使物体正好成像在传…

Vue.js 中的响应式原理是什么?

Vue.js 中的响应式原理是什么&#xff1f; Vue.js 是一种流行的前端框架&#xff0c;它使用了一种称为“响应式”的技术来实现数据绑定。这意味着当数据发生变化时&#xff0c;Vue.js会自动更新相关的视图&#xff0c;而无需手动操作DOM。在本文中&#xff0c;我们将深入探讨V…

win10蓝牙共享网络链接方法

Win10笔记本电脑利用蓝牙连接手机蓝牙共享的网络&#xff1a; 1、手机设置中其他无线连接中&#xff0c;打开“蓝牙共享网络"; 2、win10笔记本设置中打开蓝牙开关&#xff0c;并与手机蓝牙进行配对&#xff1b; 3、Win10笔记本打开控制面板&#xff0c;找到设备和打印机…

Win10更新后蓝牙音响突然没声

今天我更新了一下补丁啥的&#xff0c;然后重启一下电脑发现蓝牙音响不响了&#xff0c;调了输出设备还是电脑在响&#xff0c;搜了他们的也没解决&#xff0c;之后自己尝试重启电脑或者重启蓝牙音响&#xff0c;但还是那样&#xff0c;自己想了一下&#xff0c;就进蓝牙那里把…

win10开启蓝牙

左下角电脑图标 --> 设置 --> 设备 --> 蓝牙和其他设备 --> 点开蓝牙开关

win10打开蓝牙_联想笔记本win10无法连接蓝牙音箱的解决方法

联想Y480&#xff0c;win10操作系统&#xff0c;添加蓝牙设备时提示先打开蓝牙&#xff0c;但是系统里找不到蓝牙开关。 解决方法&#xff1a;安装联想电源管理软件&#xff08;Lenovo Energy Management&#xff09; 可以官方搜索对应系统的驱动&#xff0c;选择win7(win10未提…