Java---微服务---elasticsearch安装部署

news/2024/11/17 2:47:40/

elasticsearch安装部署

  • 1.部署单点es
    • 1.1.创建网络
    • 1.2.加载镜像
    • 1.3.运行
  • 2.部署kibana
    • 2.1.部署
    • 2.2.DevTools
  • 3.安装IK分词器
    • 3.1.在线安装ik插件(较慢)
    • 3.2.离线安装ik插件(推荐)
      • 1)查看数据卷目录
      • 2)下载并解压缩分词器安装包
      • 3)上传到es容器的插件数据卷中
      • 4)重启容器
      • 5)测试:
    • 3.3 扩展词词典
    • 3.4 停用词词典
  • 4.部署es集群

1.部署单点es

1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。大家可以自行下载镜像的tar包上传到虚拟机中,然后运行命令加载即可:

# 拉取镜像
docker pull elasticsearch
# 导入镜像
docker load -i es.tar

同理还有kibana的tar包也需要这样做。

1.3.运行

运行docker命令,部署单点es:

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小,默认1G
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置 http协议端口
  • -p 9300:9300:端口映射配置 ES容器互联端口

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名es直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
在这里插入图片描述

2.2.DevTools

kibana中提供了一个DevTools界面:
在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3vnXoB2X-1674695454846)(assets/image-20210506102630393.png)]

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

3.安装IK分词器

3.1.在线安装ik插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit
#重启容器
docker restart elasticsearch

3.2.离线安装ik插件(推荐)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[{"CreatedAt": "2022-05-06T10:06:34+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)下载并解压缩分词器安装包

下载地址:https://github.com/medcl/elasticsearch-analysis-ik,然后将下载好的ik分词器解压缩,重命名为ik

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

4)重启容器

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

在这里插入图片描述

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{"analyzer": "ik_max_word","text": "顶级全栈工程师"
}

结果:

{"tokens" : [{"token" : "顶级","start_offset" : 0,"end_offset" : 2,"type" : "CN_WORD","position" : 0},{"token" : "全","start_offset" : 2,"end_offset" : 3,"type" : "CN_CHAR","position" : 1},{"token" : "栈","start_offset" : 3,"end_offset" : 4,"type" : "CN_CHAR","position" : 2},{"token" : "工程师","start_offset" : 4,"end_offset" : 7,"type" : "CN_WORD","position" : 3},{"token" : "工程","start_offset" : 4,"end_offset" : 6,"type" : "CN_WORD","position" : 4},{"token" : "师","start_offset" : 6,"end_offset" : 7,"type" : "CN_CHAR","position" : 5}]
}

3.3 扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“玛卡巴卡” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g3Xt1thb-1674695454847)(assets/image-20210506112225508.png)]

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--><entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

奥力给
玛卡巴卡

4)重启elasticsearch

docker restart es# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{"analyzer": "ik_smart","text": "玛卡巴卡,奥力给!"
}

在这里插入图片描述

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

3.4 停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

小黑子

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{"analyzer": "ik_smart","text": "你最好不是小黑子!"
}

在这里插入图片描述

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

4.部署es集群

部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:es01:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es01environment:- node.name=es01- cluster.name=es-docker-cluster- discovery.seed_hosts=es02,es03- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data01:/usr/share/elasticsearch/dataports:- 9200:9200networks:- elastices02:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es02environment:- node.name=es02- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es03- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data02:/usr/share/elasticsearch/datanetworks:- elastices03:image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1container_name: es03environment:- node.name=es03- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es02- cluster.initial_master_nodes=es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticvolumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge

Run docker-compose to bring up the cluster:

docker-compose up
es01,es02,es03- bootstrap.memory_lock=true- "ES_JAVA_OPTS=-Xms512m -Xmx512m"ulimits:memlock:soft: -1hard: -1volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticvolumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge

如有不足,请多指教,
未完待续,持续更新!
大家一起进步!


http://www.ppmy.cn/news/19623.html

相关文章

机器学习(七):Azure机器学习模型搭建实验

文章目录 Azure机器学习模型搭建实验 前言 Azure平台简介 Azure机器学习实验 Azure机器学习模型搭建实验 前言 了解Azure机器学习平台&#xff0c;知道机器学习流程。 Azure平台简介 Azure Machine Learning&#xff08;简称“AML”&#xff09;是微软在其公有云Azure上推…

内网安全——代理技术Socks5网络通讯控制上线

目录 (一)前置知识 0x01 单机——防火墙之限制出入站 常见主机配置不出网的方式

leetcode647 回文子串

题目 给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 具有不同开始位置或结束位置的子串&#xff0c;即使是由相同的字符组成&#xff0c;也会…

机器视觉_HALCON_HDevelop用户指南_1.HDevelop介绍

文章目录前言一、HDevelop介绍1. 关于HDevelop的几点事实2. HDevelop XL3. 术语&使用前言 看完了HALCON快速向导之后&#xff0c;对HALCON有个大致认识&#xff08;HALCON基本概念、使用的场景&#xff09;。但距离实战还差得远&#xff0c;接下来我觉得可以开始学习使用H…

【大数据管理】Java实现字典树TireTree

实现字典树&#xff0c;支持插入和删除&#xff0c;能够打印每一层的数据示例数据“SJ”, “SHJ”, “SGYY”,"HGL" ,将这些数据插入前缀树&#xff0c;打印树&#xff0c;修改SHZ为SHHZ 解题思路 Trie树即字典树&#xff0c;又称单词查找树或键树&#xff0c;是一…

SpringBoot 统一功能处理

SpringBoot 统一功能处理前言一、用户登录权限效验1.1 最初的用户登录验证1.2 Spring AOP 用户统一登录验证的问题1.3 Spring 拦截器1.3.1 准备工作1.3.2 自定义拦截器1.3.3 将自定义拦截器加入到系统配置1.4 拦截器实现原理1.4.1 实现原理源码分析1.4.2 拦截器小结1.5 扩展&am…

基于Python语言和PyQt5的铁路列车运行图系统

概述 本项目是基于Python语言和PyQt5的非官方性质、简易的中国铁路列车运行图系统。本代码的发布遵循GPLv3协议。在协议允许范围内,作者保留一切权利和最终解释权。 与ETRC的联系 渊源 pyETRC项目的最初灵感来源和很多功能设置都来自由LGuo等前辈基于java语言开发的ETRC列车运…

Day08 C++STL入门基础知识五——vector容器(下) 插入删除-数据存取-交换容器-预留空间【全面深度剖析+例题代码展示】

More haste, less speed. 欲速则不达 文章目录1. 承接上文2. 插入操作2.1 函数原型(总括)2.2 尾插尾删2.2.1 操作2.2.2 代码展示2.2.3 测试结果2.3 迭代器插入2.3.1 操作2.3.2 代码展示2.3.3 测试结果2.4 think小思考2.4.1 小疑问2.4.2 思路2.4.3 代码展示2.4.4 测试结果3. 删除…