使用PaddlePaddle实现逻辑回归:从训练到模型保存与加载

news/2025/2/5 21:29:29/

1. 引入必要的库

首先,需要引入必要的库。PaddlePaddle用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。

import paddle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2. 加载自定义数据集

假设有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。使用pandas来加载数据,并进行预处理。

# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)

3. 构建逻辑回归模型

使用PaddlePaddle来构建逻辑回归模型。

# 构建逻辑回归模型
class LogisticRegression(paddle.nn.Layer):def __init__(self, num_features):super(LogisticRegression, self).__init__()self.linear = paddle.nn.Linear(num_features, 1)def forward(self, x):return paddle.sigmoid(self.linear(x))# 初始化模型
num_features = X.shape[1]
model = LogisticRegression(num_features)

4. 定义损失函数和优化器

使用二元交叉熵损失函数和随机梯度下降(SGD)优化器。

# 定义损失函数和优化器
criterion = paddle.nn.BCELoss()
optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

5. 训练模型

使用自定义数据集训练模型。

# 将数据转换为PaddlePaddle的张量
X_tensor = paddle.to_tensor(X)
y_tensor = paddle.to_tensor(y.reshape(-1, 1))# 训练模型
num_epochs = 100
batch_size = 32
for epoch in range(num_epochs):for i in range(0, len(X), batch_size):X_batch = X_tensor[i:i+batch_size]y_batch = y_tensor[i:i+batch_size]# 前向传播outputs = model(X_batch)loss = criterion(outputs, y_batch)# 反向传播和优化loss.backward()optimizer.step()optimizer.clear_grad()if (epoch+1) % 10 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.numpy()}')

6. 保存模型

训练完成后,可以使用PaddlePaddle的save方法保存模型。

# 保存模型
paddle.save(model.state_dict(), 'logistic_regression_model.pdparams')

7. 加载模型并进行预测

在需要时,可以使用PaddlePaddle的load方法加载模型,并进行预测。

# 加载模型
model = LogisticRegression(num_features)
model.set_state_dict(paddle.load('logistic_regression_model.pdparams'))
model.eval()# 进行预测
X_test = paddle.to_tensor(X[:5])
predictions = model(X_test)
predicted_labels = (predictions > 0.5).astype(int)print("Predicted Labels:", predicted_labels.numpy().flatten())

8. 结果可视化

如果需要,可以绘制训练过程中的损失变化曲线,以帮助理解模型的性能。

# 这里假设我们在训练过程中记录了损失值
# plt.plot(loss_values, label='Loss')
# plt.title('Model Loss')
# plt.xlabel('Epochs')
# plt.ylabel('Loss')
# plt.legend()
# plt.show()


http://www.ppmy.cn/news/1569609.html

相关文章

C语言内存之旅:从静态到动态的跨越

大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文一 动态内存管理的必要性二 动态…

《手札·开源篇》从开源到商业化:中小企业的低成本数字化转型路径 ——SKF轴承贸易商的十年信息化演进启示

一、战略驱动的数字化演进逻辑 在轴承行业利润持续走低的背景下,我们选择了一条"开源筑基-场景突破-数据驱动"的演进路径。从2013年金蝶EAS的基础供应链管理,到2023年实现车间设备全要素数字化,系统建设始终遵循"业务场景驱动…

ASP.NET Core Filter

目录 什么是Filter? Exception Filter 实现 注意 ActionFilter 注意 案例:自动启用事务的筛选器 事务的使用 TransactionScopeFilter的使用 什么是Filter? 切面编程机制,在ASP.NET Core特定的位置执行我们自定义的代码。…

pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)

以下是一个完整的词嵌入(Word Embedding)示例代码,使用 modelscope 下载 tiansz/bert-base-chinese 模型,并通过 transformers 加载模型,获取中文句子的词嵌入。 from modelscope.hub.snapshot_download import snaps…

使用Pygame制作“打砖块”游戏

1. 前言 打砖块(Breakout / Arkanoid) 是一款经典街机游戏,玩家控制一个可左右移动的挡板,接住并反弹球,击碎屏幕上方的砖块。随着砖块被击碎,不仅能获得分数,还可以体验到不断加速或复杂的反弹…

LeetCode:392.判断子序列

跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:392.判断子序列 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字…

DeepSeek大模型技术深度解析:揭开Transformer架构的神秘面纱

摘要 DeepSeek大模型由北京深度求索人工智能基础技术研究有限公司开发,基于Transformer架构,具备卓越的自然语言理解和生成能力。该模型能够高效处理智能对话、文本生成和语义理解等复杂任务,标志着人工智能在自然语言处理领域的重大进展。 关…

自定义数据集 使用paddlepaddle框架实现逻辑回归

导入必要的库 import numpy as np import paddle import paddle.nn as nn 数据准备: seed1 paddle.seed(seed)# 1.散点输入 定义输入数据 data [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6…