transform3d.rs代码定义了一个名为 Transform3D 的 Rust 结构体,它用于表示一个3D变换矩阵。这个结构体是泛型的,包含三个类型参数:T、Src 和 Dst。其中,T 用于矩阵元素的数据类型,Src 和 Dst 用于表示变换的源和目标类型(虽然在这段代码中,Src 和 Dst 类型通过 PhantomData 引入,但并未在结构体功能上直接使用)。
一、transform3d.rs源码
rust">// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.#![allow(clippy::just_underscores_and_digits)]use super::{Angle, UnknownUnit};
use crate::approxeq::ApproxEq;
use crate::box2d::Box2D;
use crate::box3d::Box3D;
use crate::homogen::HomogeneousVector;
use crate::num::{One, Zero};
use crate::point::{point2, point3, Point2D, Point3D};
use crate::rect::Rect;
use crate::scale::Scale;
use crate::transform2d::Transform2D;
use crate::trig::Trig;
use crate::vector::{vec2, vec3, Vector2D, Vector3D};use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::marker::PhantomData;
use core::ops::{Add, Div, Mul, Neg, Sub};#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
#[cfg(feature = "mint")]
use mint;
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};/// A 3d transform stored as a column-major 4 by 4 matrix.
///
/// Transforms can be parametrized over the source and destination units, to describe a
/// transformation from a space to another.
/// For example, `Transform3D<f32, WorldSpace, ScreenSpace>::transform_point3d`
/// takes a `Point3D<f32, WorldSpace>` and returns a `Point3D<f32, ScreenSpace>`.
///
/// Transforms expose a set of convenience methods for pre- and post-transformations.
/// Pre-transformations (`pre_*` methods) correspond to adding an operation that is
/// applied before the rest of the transformation, while post-transformations (`then_*`
/// methods) add an operation that is applied after.
///
/// When translating `Transform3D` into general matrix representations, consider that the
/// representation follows the column major notation with column vectors.
///
/// ```text
/// |x'| | m11 m12 m13 m14 | |x|
/// |y'| | m21 m22 m23 m24 | |y|
/// |z'| = | m31 m32 m33 m34 | x |y|
/// |w | | m41 m42 m43 m44 | |1|
/// ```
///
/// The translation terms are `m41`, `m42` and `m43`.
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde",serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
#[rustfmt::skip]
pub struct Transform3D<T, Src, Dst> {pub m11: T, pub m12: T, pub m13: T, pub m14: T,pub m21: T, pub m22: T, pub m23: T, pub m24: T,pub m31: T, pub m32: T, pub m33: T, pub m34: T,pub m41: T, pub m42: T, pub m43: T, pub m44: T,#[doc(hidden)]pub _unit: PhantomData<(Src, Dst)>,
}#[cfg(feature = "arbitrary")]
impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Transform3D<T, Src, Dst>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (m11, m12, m13, m14) = arbitrary::Arbitrary::arbitrary(u)?;let (m21, m22, m23, m24) = arbitrary::Arbitrary::arbitrary(u)?;let (m31, m32, m33, m34) = arbitrary::Arbitrary::arbitrary(u)?;let (m41, m42, m43, m44) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Transform3D {m11,m12,m13,m14,m21,m22,m23,m24,m31,m32,m33,m34,m41,m42,m43,m44,_unit: PhantomData,})}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, Src, Dst> Zeroable for Transform3D<T, Src, Dst> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, Src: 'static, Dst: 'static> Pod for Transform3D<T, Src, Dst> {}impl<T: Copy, Src, Dst> Copy for Transform3D<T, Src, Dst> {}impl<T: Clone, Src, Dst> Clone for Transform3D<T, Src, Dst> {fn clone(&self) -> Self {Transform3D {m11: self.m11.clone(),m12: self.m12.clone(),m13: self.m13.clone(),m14: self.m14.clone(),m21: self.m21.clone(),m22: self.m22.clone(),m23: self.m23.clone(),m24: self.m24.clone(),m31: self.m31.clone(),m32: self.m32.clone(),m33: self.m33.clone(),m34: self.m34.clone(),m41: self.m41.clone(),m42: self.m42.clone(),m43: self.m43.clone(),m44: self.m44.clone(),_unit: PhantomData,}}
}impl<T, Src, Dst> Eq for Transform3D<T, Src, Dst> where T: Eq {}impl<T, Src, Dst> PartialEq for Transform3D<T, Src, Dst>
whereT: PartialEq,
{fn eq(&self, other: &Self) -> bool {self.m11 == other.m11&& self.m12 == other.m12&& self.m13 == other.m13&& self.m14 == other.m14&& self.m21 == other.m21&& self.m22 == other.m22&& self.m23 == other.m23&& self.m24 == other.m24&& self.m31 == other.m31&& self.m32 == other.m32&& self.m33 == other.m33&& self.m34 == other.m34&& self.m41 == other.m41&& self.m42 == other.m42&& self.m43 == other.m43&& self.m44 == other.m44}
}impl<T, Src, Dst> Hash for Transform3D<T, Src, Dst>
whereT: Hash,
{fn hash<H: core::hash::Hasher>(&self, h: &mut H) {self.m11.hash(h);self.m12.hash(h);self.m13.hash(h);self.m14.hash(h);self.m21.hash(h);self.m22.hash(h);self.m23.hash(h);self.m24.hash(h);self.m31.hash(h);self.m32.hash(h);self.m33.hash(h);self.m34.hash(h);self.m41.hash(h);self.m42.hash(h);self.m43.hash(h);self.m44.hash(h);}
}impl<T, Src, Dst> Transform3D<T, Src, Dst> {/// Create a transform specifying all of it's component as a 4 by 4 matrix.////// Components are specified following column-major-column-vector matrix notation./// For example, the translation terms m41, m42, m43 are the 13rd, 14th and 15th parameters.////// ```/// use euclid::default::Transform3D;/// let tx = 1.0;/// let ty = 2.0;/// let tz = 3.0;/// let translation = Transform3D::new(/// 1.0, 0.0, 0.0, 0.0,/// 0.0, 1.0, 0.0, 0.0,/// 0.0, 0.0, 1.0, 0.0,/// tx, ty, tz, 1.0,/// );/// ```#[inline]#[allow(clippy::too_many_arguments)]#[rustfmt::skip]pub const fn new(m11: T, m12: T, m13: T, m14: T,m21: T, m22: T, m23: T, m24: T,m31: T, m32: T, m33: T, m34: T,m41: T, m42: T, m43: T, m44: T,) -> Self {Transform3D {m11, m12, m13, m14,m21, m22, m23, m24,m31, m32, m33, m34,m41, m42, m43, m44,_unit: PhantomData,}}/// Create a transform representing a 2d transformation from the components/// of a 2 by 3 matrix transformation.////// Components follow the column-major-column-vector notation (m41 and m42/// representing the translation terms).////// ```text/// m11 m12 0 0/// m21 m22 0 0/// 0 0 1 0/// m41 m42 0 1/// ```#[inline]#[rustfmt::skip]pub fn new_2d(m11: T, m12: T, m21: T, m22: T, m41: T, m42: T) -> SelfwhereT: Zero + One,{let _0 = || T::zero();let _1 = || T::one();Self::new(m11, m12, _0(), _0(),m21, m22, _0(), _0(),_0(), _0(), _1(), _0(),m41, m42, _0(), _1())}/// Returns `true` if this transform can be represented with a `Transform2D`.////// See <https://drafts.csswg.org/css-transforms/#2d-transform>#[inline]pub fn is_2d(&self) -> boolwhereT: Zero + One + PartialEq,{let (_0, _1): (T, T) = (Zero::zero(), One::one());self.m31 == _0&& self.m32 == _0&& self.m13 == _0&& self.m23 == _0&& self.m43 == _0&& self.m14 == _0&& self.m24 == _0&& self.m34 == _0&& self.m33 == _1&& self.m44 == _1}
}impl<T: Copy, Src, Dst> Transform3D<T, Src, Dst> {/// Returns an array containing this transform's terms.////// The terms are laid out in the same order as they are/// specified in `Transform3D::new`, that is following the/// column-major-column-vector matrix notation.////// For example the translation terms are found on the/// 13th, 14th and 15th slots of the array.#[inline]#[rustfmt::skip]pub fn to_array(&self) -> [T; 16] {[self.m11, self.m12, self.m13, self.m14,self.m21, self.m22, self.m23, self.m24,self.m31, self.m32, self.m33, self.m34,self.m41, self.m42, self.m43, self.m44]}/// Returns an array containing this transform's terms transposed.////// The terms are laid out in transposed order from the same order of/// `Transform3D::new` and `Transform3D::to_array`, that is following/// the row-major-column-vector matrix notation.////// For example the translation terms are found at indices 3, 7 and 11/// of the array.#[inline]#[rustfmt::skip]pub fn to_array_transposed(&self) -> [T; 16] {[self.m11, self.m21, self.m31, self.m41,self.m12, self.m22, self.m32, self.m42,self.m13, self.m23, self.m33, self.m43,self.m14, self.m24, self.m34, self.m44]}/// Equivalent to `to_array` with elements packed four at a time/// in an array of arrays.#[inline]#[rustfmt::skip]pub fn to_arrays(&self) -> [[T; 4]; 4] {[[self.m11, self.m12, self.m13, self.m14],[self.m21, self.m22, self.m23, self.m24],[self.m31, self.m32, self.m33, self.m34],[self.m41, self.m42, self.m43, self.m44],]}/// Equivalent to `to_array_transposed` with elements packed/// four at a time in an array of arrays.#[inline]#[rustfmt::skip]pub fn to_arrays_transposed(&self) -> [[T; 4]; 4] {[[self.m11, self.m21, self.m31, self.m41],[self.m12, self.m22, self.m32, self.m42],[self.m13, self.m23, self.m33, self.m43],[self.m14, self.m24, self.m34, self.m44],]}/// Create a transform providing its components via an array/// of 16 elements instead of as individual parameters.////// The order of the components corresponds to the/// column-major-column-vector matrix notation (the same order/// as `Transform3D::new`).#[inline]#[rustfmt::skip]pub fn from_array(array: [T; 16]) -> Self {Self::new(array[0], array[1], array[2], array[3],array[4], array[5], array[6], array[7],array[8], array[9], array[10], array[11],array[12], array[13], array[14], array[15],)}/// Equivalent to `from_array` with elements packed four at a time/// in an array of arrays.////// The order of the components corresponds to the/// column-major-column-vector matrix notation (the same order/// as `Transform3D::new`).#[inline]#[rustfmt::skip]pub fn from_arrays(array: [[T; 4]; 4]) -> Self {Self::new(array[0][0], array[0][1], array[0][2], array[0][3],array[1][0], array[1][1], array[1][2], array[1][3],array[2][0], array[2][1], array[2][2], array[2][3],array[3][0], array[3][1], array[3][2], array[3][3],)}/// Tag a unitless value with units.#[inline]#[rustfmt::skip]pub fn from_untyped(m: &Transform3D<T, UnknownUnit, UnknownUnit>) -> Self {Transform3D::new(m.m11, m.m12, m.m13, m.m14,m.m21, m.m22, m.m23, m.m24,m.m31, m.m32, m.m33, m.m34,m.m41, m.m42, m.m43, m.m44,)}/// Drop the units, preserving only the numeric value.#[inline]#[rustfmt::skip]pub fn to_untyped(&self) -> Transform3D<T, UnknownUnit, UnknownUnit> {Transform3D::new(self.m11, self.m12, self.m13, self.m14,self.m21, self.m22, self.m23, self.m24,self.m31, self.m32, self.m33, self.m34,self.m41, self.m42, self.m43, self.m44,)}/// Returns the same transform with a different source unit.#[inline]#[rustfmt::skip]pub fn with_source<NewSrc>(&self) -> Transform3D<T, NewSrc, Dst> {Transform3D::new(self.m11, self.m12, self.m13, self.m14,self.m21, self.m22, self.m23, self.m24,self.m31, self.m32, self.m33, self.m34,self.m41, self.m42, self.m43, self.m44,)}/// Returns the same transform with a different destination unit.#[inline]#[rustfmt::skip]pub fn with_destination<NewDst>(&self) -> Transform3D<T, Src, NewDst> {Transform3D::new(self.m11, self.m12, self.m13, self.m14,self.m21, self.m22, self.m23, self.m24,self.m31, self.m32, self.m33, self.m34,self.m41, self.m42, self.m43, self.m44,)}/// Create a 2D transform picking the relevant terms from this transform.////// This method assumes that self represents a 2d transformation, callers/// should check that [`is_2d`] returns `true` beforehand.////// [`is_2d`]: Self::is_2dpub fn to_2d(&self) -> Transform2D<T, Src, Dst> {Transform2D::new(self.m11, self.m12, self.m21, self.m22, self.m41, self.m42)}
}impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Zero + One,
{/// Creates an identity matrix:////// ```text/// 1 0 0 0/// 0 1 0 0/// 0 0 1 0/// 0 0 0 1/// ```#[inline]pub fn identity() -> Self {Self::translation(T::zero(), T::zero(), T::zero())}/// Intentional not public, because it checks for exact equivalence/// while most consumers will probably want some sort of approximate/// equivalence to deal with floating-point errors.#[inline]fn is_identity(&self) -> boolwhereT: PartialEq,{*self == Self::identity()}/// Create a 2d skew transform.////// See <https://drafts.csswg.org/css-transforms/#funcdef-skew>#[rustfmt::skip]pub fn skew(alpha: Angle<T>, beta: Angle<T>) -> SelfwhereT: Trig,{let _0 = || T::zero();let _1 = || T::one();let (sx, sy) = (beta.radians.tan(), alpha.radians.tan());Self::new(_1(), sx, _0(), _0(),sy, _1(), _0(), _0(),_0(), _0(), _1(), _0(),_0(), _0(), _0(), _1(),)}/// Create a simple perspective transform, projecting to the plane `z = -d`.////// ```text/// 1 0 0 0/// 0 1 0 0/// 0 0 1 -1/d/// 0 0 0 1/// ```////// See <https://drafts.csswg.org/css-transforms-2/#PerspectiveDefined>.pub fn perspective(d: T) -> SelfwhereT: Neg<Output = T> + Div<Output = T>,{let _0 = || T::zero();let _1 = || T::one();Self::new(_1(),_0(),_0(),_0(),_0(),_1(),_0(),_0(),_0(),_0(),_1(),-_1() / d,_0(),_0(),_0(),_1(),)}
}/// Methods for combining generic transformations
impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Copy + Add<Output = T> + Mul<Output = T>,
{/// Returns the multiplication of the two matrices such that mat's transformation/// applies after self's transformation.////// Assuming row vectors, this is equivalent to self * mat#[must_use]#[rustfmt::skip]pub fn then<NewDst>(&self, other: &Transform3D<T, Dst, NewDst>) -> Transform3D<T, Src, NewDst> {Transform3D::new(self.m11 * other.m11 + self.m12 * other.m21 + self.m13 * other.m31 + self.m14 * other.m41,self.m11 * other.m12 + self.m12 * other.m22 + self.m13 * other.m32 + self.m14 * other.m42,self.m11 * other.m13 + self.m12 * other.m23 + self.m13 * other.m33 + self.m14 * other.m43,self.m11 * other.m14 + self.m12 * other.m24 + self.m13 * other.m34 + self.m14 * other.m44,self.m21 * other.m11 + self.m22 * other.m21 + self.m23 * other.m31 + self.m24 * other.m41,self.m21 * other.m12 + self.m22 * other.m22 + self.m23 * other.m32 + self.m24 * other.m42,self.m21 * other.m13 + self.m22 * other.m23 + self.m23 * other.m33 + self.m24 * other.m43,self.m21 * other.m14 + self.m22 * other.m24 + self.m23 * other.m34 + self.m24 * other.m44,self.m31 * other.m11 + self.m32 * other.m21 + self.m33 * other.m31 + self.m34 * other.m41,self.m31 * other.m12 + self.m32 * other.m22 + self.m33 * other.m32 + self.m34 * other.m42,self.m31 * other.m13 + self.m32 * other.m23 + self.m33 * other.m33 + self.m34 * other.m43,self.m31 * other.m14 + self.m32 * other.m24 + self.m33 * other.m34 + self.m34 * other.m44,self.m41 * other.m11 + self.m42 * other.m21 + self.m43 * other.m31 + self.m44 * other.m41,self.m41 * other.m12 + self.m42 * other.m22 + self.m43 * other.m32 + self.m44 * other.m42,self.m41 * other.m13 + self.m42 * other.m23 + self.m43 * other.m33 + self.m44 * other.m43,self.m41 * other.m14 + self.m42 * other.m24 + self.m43 * other.m34 + self.m44 * other.m44,)}
}/// Methods for creating and combining translation transformations
impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Zero + One,
{/// Create a 3d translation transform:////// ```text/// 1 0 0 0/// 0 1 0 0/// 0 0 1 0/// x y z 1/// ```#[inline]#[rustfmt::skip]pub fn translation(x: T, y: T, z: T) -> Self {let _0 = || T::zero();let _1 = || T::one();Self::new(_1(), _0(), _0(), _0(),_0(), _1(), _0(), _0(),_0(), _0(), _1(), _0(),x, y, z, _1(),)}/// Returns a transform with a translation applied before self's transformation.#[must_use]pub fn pre_translate(&self, v: Vector3D<T, Src>) -> SelfwhereT: Copy + Add<Output = T> + Mul<Output = T>,{Transform3D::translation(v.x, v.y, v.z).then(self)}/// Returns a transform with a translation applied after self's transformation.#[must_use]pub fn then_translate(&self, v: Vector3D<T, Dst>) -> SelfwhereT: Copy + Add<Output = T> + Mul<Output = T>,{self.then(&Transform3D::translation(v.x, v.y, v.z))}
}/// Methods for creating and combining rotation transformations
impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Copy+ Add<Output = T>+ Sub<Output = T>+ Mul<Output = T>+ Div<Output = T>+ Zero+ One+ Trig,
{/// Create a 3d rotation transform from an angle / axis./// The supplied axis must be normalized.#[rustfmt::skip]pub fn rotation(x: T, y: T, z: T, theta: Angle<T>) -> Self {let (_0, _1): (T, T) = (Zero::zero(), One::one());let _2 = _1 + _1;let xx = x * x;let yy = y * y;let zz = z * z;let half_theta = theta.get() / _2;let sc = half_theta.sin() * half_theta.cos();let sq = half_theta.sin() * half_theta.sin();Transform3D::new(_1 - _2 * (yy + zz) * sq,_2 * (x * y * sq + z * sc),_2 * (x * z * sq - y * sc),_0,_2 * (x * y * sq - z * sc),_1 - _2 * (xx + zz) * sq,_2 * (y * z * sq + x * sc),_0,_2 * (x * z * sq + y * sc),_2 * (y * z * sq - x * sc),_1 - _2 * (xx + yy) * sq,_0,_0,_0,_0,_1)}/// Returns a transform with a rotation applied after self's transformation.#[must_use]pub fn then_rotate(&self, x: T, y: T, z: T, theta: Angle<T>) -> Self {self.then(&Transform3D::rotation(x, y, z, theta))}/// Returns a transform with a rotation applied before self's transformation.#[must_use]pub fn pre_rotate(&self, x: T, y: T, z: T, theta: Angle<T>) -> Self {Transform3D::rotation(x, y, z, theta).then(self)}
}/// Methods for creating and combining scale transformations
impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Zero + One,
{/// Create a 3d scale transform:////// ```text/// x 0 0 0/// 0 y 0 0/// 0 0 z 0/// 0 0 0 1/// ```#[inline]#[rustfmt::skip]pub fn scale(x: T, y: T, z: T) -> Self {let _0 = || T::zero();let _1 = || T::one();Self::new(x, _0(), _0(), _0(),_0(), y, _0(), _0(),_0(), _0(), z, _0(),_0(), _0(), _0(), _1(),)}/// Returns a transform with a scale applied before self's transformation.#[must_use]#[rustfmt::skip]pub fn pre_scale(&self, x: T, y: T, z: T) -> SelfwhereT: Copy + Add<Output = T> + Mul<Output = T>,{Transform3D::new(self.m11 * x, self.m12 * x, self.m13 * x, self.m14 * x,self.m21 * y, self.m22 * y, self.m23 * y, self.m24 * y,self.m31 * z, self.m32 * z, self.m33 * z, self.m34 * z,self.m41 , self.m42, self.m43, self.m44)}/// Returns a transform with a scale applied after self's transformation.#[must_use]pub fn then_scale(&self, x: T, y: T, z: T) -> SelfwhereT: Copy + Add<Output = T> + Mul<Output = T>,{self.then(&Transform3D::scale(x, y, z))}
}/// Methods for apply transformations to objects
impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Copy + Add<Output = T> + Mul<Output = T>,
{/// Returns the homogeneous vector corresponding to the transformed 2d point.////// The input point must be use the unit Src, and the returned point has the unit Dst.#[inline]#[rustfmt::skip]pub fn transform_point2d_homogeneous(&self, p: Point2D<T, Src>) -> HomogeneousVector<T, Dst> {let x = p.x * self.m11 + p.y * self.m21 + self.m41;let y = p.x * self.m12 + p.y * self.m22 + self.m42;let z = p.x * self.m13 + p.y * self.m23 + self.m43;let w = p.x * self.m14 + p.y * self.m24 + self.m44;HomogeneousVector::new(x, y, z, w)}/// Returns the given 2d point transformed by this transform, if the transform makes sense,/// or `None` otherwise.////// The input point must be use the unit Src, and the returned point has the unit Dst.#[inline]pub fn transform_point2d(&self, p: Point2D<T, Src>) -> Option<Point2D<T, Dst>>whereT: Div<Output = T> + Zero + PartialOrd,{//Note: could use `transform_point2d_homogeneous()` but it would waste the calculus of `z`let w = p.x * self.m14 + p.y * self.m24 + self.m44;if w > T::zero() {let x = p.x * self.m11 + p.y * self.m21 + self.m41;let y = p.x * self.m12 + p.y * self.m22 + self.m42;Some(Point2D::new(x / w, y / w))} else {None}}/// Returns the given 2d vector transformed by this matrix.////// The input point must be use the unit Src, and the returned point has the unit Dst.#[inline]pub fn transform_vector2d(&self, v: Vector2D<T, Src>) -> Vector2D<T, Dst> {vec2(v.x * self.m11 + v.y * self.m21,v.x * self.m12 + v.y * self.m22,)}/// Returns the homogeneous vector corresponding to the transformed 3d point.////// The input point must be use the unit Src, and the returned point has the unit Dst.#[inline]pub fn transform_point3d_homogeneous(&self, p: Point3D<T, Src>) -> HomogeneousVector<T, Dst> {let x = p.x * self.m11 + p.y * self.m21 + p.z * self.m31 + self.m41;let y = p.x * self.m12 + p.y * self.m22 + p.z * self.m32 + self.m42;let z = p.x * self.m13 + p.y * self.m23 + p.z * self.m33 + self.m43;let w = p.x * self.m14 + p.y * self.m24 + p.z * self.m34 + self.m44;HomogeneousVector::new(x, y, z, w)}/// Returns the given 3d point transformed by this transform, if the transform makes sense,/// or `None` otherwise.////// The input point must be use the unit Src, and the returned point has the unit Dst.#[inline]pub fn transform_point3d(&self, p: Point3D<T, Src>) -> Option<Point3D<T, Dst>>whereT: Div<Output = T> + Zero + PartialOrd,{self.transform_point3d_homogeneous(p).to_point3d()}/// Returns the given 3d vector transformed by this matrix.////// The input point must be use the unit Src, and the returned point has the unit Dst.#[inline]pub fn transform_vector3d(&self, v: Vector3D<T, Src>) -> Vector3D<T, Dst> {vec3(v.x * self.m11 + v.y * self.m21 + v.z * self.m31,v.x * self.m12 + v.y * self.m22 + v.z * self.m32,v.x * self.m13 + v.y * self.m23 + v.z * self.m33,)}/// Returns a rectangle that encompasses the result of transforming the given rectangle by this/// transform, if the transform makes sense for it, or `None` otherwise.pub fn outer_transformed_rect(&self, rect: &Rect<T, Src>) -> Option<Rect<T, Dst>>whereT: Sub<Output = T> + Div<Output = T> + Zero + PartialOrd,{let min = rect.min();let max = rect.max();Some(Rect::from_points(&[self.transform_point2d(min)?,self.transform_point2d(max)?,self.transform_point2d(point2(max.x, min.y))?,self.transform_point2d(point2(min.x, max.y))?,]))}/// Returns a 2d box that encompasses the result of transforming the given box by this/// transform, if the transform makes sense for it, or `None` otherwise.pub fn outer_transformed_box2d(&self, b: &Box2D<T, Src>) -> Option<Box2D<T, Dst>>whereT: Sub<Output = T> + Div<Output = T> + Zero + PartialOrd,{Some(Box2D::from_points(&[self.transform_point2d(b.min)?,self.transform_point2d(b.max)?,self.transform_point2d(point2(b.max.x, b.min.y))?,self.transform_point2d(point2(b.min.x, b.max.y))?,]))}/// Returns a 3d box that encompasses the result of transforming the given box by this/// transform, if the transform makes sense for it, or `None` otherwise.pub fn outer_transformed_box3d(&self, b: &Box3D<T, Src>) -> Option<Box3D<T, Dst>>whereT: Sub<Output = T> + Div<Output = T> + Zero + PartialOrd,{Some(Box3D::from_points(&[self.transform_point3d(point3(b.min.x, b.min.y, b.min.z))?,self.transform_point3d(point3(b.min.x, b.min.y, b.max.z))?,self.transform_point3d(point3(b.min.x, b.max.y, b.min.z))?,self.transform_point3d(point3(b.min.x, b.max.y, b.max.z))?,self.transform_point3d(point3(b.max.x, b.min.y, b.min.z))?,self.transform_point3d(point3(b.max.x, b.min.y, b.max.z))?,self.transform_point3d(point3(b.max.x, b.max.y, b.min.z))?,self.transform_point3d(point3(b.max.x, b.max.y, b.max.z))?,]))}
}impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Copy+ Add<T, Output = T>+ Sub<T, Output = T>+ Mul<T, Output = T>+ Div<T, Output = T>+ Neg<Output = T>+ PartialOrd+ One+ Zero,
{/// Create an orthogonal projection transform.#[rustfmt::skip]pub fn ortho(left: T, right: T,bottom: T, top: T,near: T, far: T) -> Self {let tx = -((right + left) / (right - left));let ty = -((top + bottom) / (top - bottom));let tz = -((far + near) / (far - near));let (_0, _1): (T, T) = (Zero::zero(), One::one());let _2 = _1 + _1;Transform3D::new(_2 / (right - left), _0 , _0 , _0,_0 , _2 / (top - bottom), _0 , _0,_0 , _0 , -_2 / (far - near), _0,tx , ty , tz , _1)}/// Check whether shapes on the XY plane with Z pointing towards the/// screen transformed by this matrix would be facing back.#[rustfmt::skip]pub fn is_backface_visible(&self) -> bool {// inverse().m33 < 0;let det = self.determinant();let m33 = self.m12 * self.m24 * self.m41 - self.m14 * self.m22 * self.m41 +self.m14 * self.m21 * self.m42 - self.m11 * self.m24 * self.m42 -self.m12 * self.m21 * self.m44 + self.m11 * self.m22 * self.m44;let _0: T = Zero::zero();(m33 * det) < _0}/// Returns whether it is possible to compute the inverse transform.#[inline]pub fn is_invertible(&self) -> bool {self.determinant() != Zero::zero()}/// Returns the inverse transform if possible.pub fn inverse(&self) -> Option<Transform3D<T, Dst, Src>> {let det = self.determinant();if det == Zero::zero() {return None;}// todo(gw): this could be made faster by special casing// for simpler transform types.#[rustfmt::skip]let m = Transform3D::new(self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 +self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 -self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44,self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 -self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 +self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44,self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 +self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 -self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44,self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 -self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 +self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34,self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 -self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 +self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44,self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 +self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 -self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44,self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 -self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 +self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44,self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 +self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 -self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34,self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 +self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 -self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44,self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 -self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 +self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44,self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 +self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 -self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44,self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 -self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 +self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34,self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 -self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 +self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43,self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 +self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 -self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43,self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 -self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 +self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43,self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 +self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 -self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33);let _1: T = One::one();Some(m.mul_s(_1 / det))}/// Compute the determinant of the transform.#[rustfmt::skip]pub fn determinant(&self) -> T {self.m14 * self.m23 * self.m32 * self.m41 -self.m13 * self.m24 * self.m32 * self.m41 -self.m14 * self.m22 * self.m33 * self.m41 +self.m12 * self.m24 * self.m33 * self.m41 +self.m13 * self.m22 * self.m34 * self.m41 -self.m12 * self.m23 * self.m34 * self.m41 -self.m14 * self.m23 * self.m31 * self.m42 +self.m13 * self.m24 * self.m31 * self.m42 +self.m14 * self.m21 * self.m33 * self.m42 -self.m11 * self.m24 * self.m33 * self.m42 -self.m13 * self.m21 * self.m34 * self.m42 +self.m11 * self.m23 * self.m34 * self.m42 +self.m14 * self.m22 * self.m31 * self.m43 -self.m12 * self.m24 * self.m31 * self.m43 -self.m14 * self.m21 * self.m32 * self.m43 +self.m11 * self.m24 * self.m32 * self.m43 +self.m12 * self.m21 * self.m34 * self.m43 -self.m11 * self.m22 * self.m34 * self.m43 -self.m13 * self.m22 * self.m31 * self.m44 +self.m12 * self.m23 * self.m31 * self.m44 +self.m13 * self.m21 * self.m32 * self.m44 -self.m11 * self.m23 * self.m32 * self.m44 -self.m12 * self.m21 * self.m33 * self.m44 +self.m11 * self.m22 * self.m33 * self.m44}/// Multiplies all of the transform's component by a scalar and returns the result.#[must_use]#[rustfmt::skip]pub fn mul_s(&self, x: T) -> Self {Transform3D::new(self.m11 * x, self.m12 * x, self.m13 * x, self.m14 * x,self.m21 * x, self.m22 * x, self.m23 * x, self.m24 * x,self.m31 * x, self.m32 * x, self.m33 * x, self.m34 * x,self.m41 * x, self.m42 * x, self.m43 * x, self.m44 * x)}/// Convenience function to create a scale transform from a `Scale`.pub fn from_scale(scale: Scale<T, Src, Dst>) -> Self {Transform3D::scale(scale.get(), scale.get(), scale.get())}
}impl<T, Src, Dst> Transform3D<T, Src, Dst>
whereT: Copy + Mul<Output = T> + Div<Output = T> + Zero + One + PartialEq,
{/// Returns a projection of this transform in 2d space.pub fn project_to_2d(&self) -> Self {let (_0, _1): (T, T) = (Zero::zero(), One::one());let mut result = self.clone();result.m31 = _0;result.m32 = _0;result.m13 = _0;result.m23 = _0;result.m33 = _1;result.m43 = _0;result.m34 = _0;// Try to normalize perspective when possible to convert to a 2d matrix.// Some matrices, such as those derived from perspective transforms, can// modify m44 from 1, while leaving the rest of the fourth column// (m14, m24) at 0. In this case, after resetting the third row and// third column above, the value of m44 functions only to scale the// coordinate transform divide by W. The matrix can be converted to// a true 2D matrix by normalizing out the scaling effect of m44 on// the remaining components ahead of time.if self.m14 == _0 && self.m24 == _0 && self.m44 != _0 && self.m44 != _1 {let scale = _1 / self.m44;result.m11 = result.m11 * scale;result.m12 = result.m12 * scale;result.m21 = result.m21 * scale;result.m22 = result.m22 * scale;result.m41 = result.m41 * scale;result.m42 = result.m42 * scale;result.m44 = _1;}result}
}impl<T: NumCast + Copy, Src, Dst> Transform3D<T, Src, Dst> {/// Cast from one numeric representation to another, preserving the units.#[inline]pub fn cast<NewT: NumCast>(&self) -> Transform3D<NewT, Src, Dst> {self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another, preserving the units.#[rustfmt::skip]pub fn try_cast<NewT: NumCast>(&self) -> Option<Transform3D<NewT, Src, Dst>> {match (NumCast::from(self.m11), NumCast::from(self.m12),NumCast::from(self.m13), NumCast::from(self.m14),NumCast::from(self.m21), NumCast::from(self.m22),NumCast::from(self.m23), NumCast::from(self.m24),NumCast::from(self.m31), NumCast::from(self.m32),NumCast::from(self.m33), NumCast::from(self.m34),NumCast::from(self.m41), NumCast::from(self.m42),NumCast::from(self.m43), NumCast::from(self.m44)) {(Some(m11), Some(m12), Some(m13), Some(m14),Some(m21), Some(m22), Some(m23), Some(m24),Some(m31), Some(m32), Some(m33), Some(m34),Some(m41), Some(m42), Some(m43), Some(m44)) => {Some(Transform3D::new(m11, m12, m13, m14,m21, m22, m23, m24,m31, m32, m33, m34,m41, m42, m43, m44))},_ => None}}
}impl<T: ApproxEq<T>, Src, Dst> Transform3D<T, Src, Dst> {/// Returns `true` if this transform is approximately equal to the other one, using/// `T`'s default epsilon value.////// The same as [`ApproxEq::approx_eq`] but available without importing trait.#[inline]pub fn approx_eq(&self, other: &Self) -> bool {<Self as ApproxEq<T>>::approx_eq(self, other)}/// Returns `true` if this transform is approximately equal to the other one, using/// a provided epsilon value.////// The same as [`ApproxEq::approx_eq_eps`] but available without importing trait.#[inline]pub fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool {<Self as ApproxEq<T>>::approx_eq_eps(self, other, eps)}
}impl<T: ApproxEq<T>, Src, Dst> ApproxEq<T> for Transform3D<T, Src, Dst> {#[inline]fn approx_epsilon() -> T {T::approx_epsilon()}#[rustfmt::skip]fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool {self.m11.approx_eq_eps(&other.m11, eps) && self.m12.approx_eq_eps(&other.m12, eps) &&self.m13.approx_eq_eps(&other.m13, eps) && self.m14.approx_eq_eps(&other.m14, eps) &&self.m21.approx_eq_eps(&other.m21, eps) && self.m22.approx_eq_eps(&other.m22, eps) &&self.m23.approx_eq_eps(&other.m23, eps) && self.m24.approx_eq_eps(&other.m24, eps) &&self.m31.approx_eq_eps(&other.m31, eps) && self.m32.approx_eq_eps(&other.m32, eps) &&self.m33.approx_eq_eps(&other.m33, eps) && self.m34.approx_eq_eps(&other.m34, eps) &&self.m41.approx_eq_eps(&other.m41, eps) && self.m42.approx_eq_eps(&other.m42, eps) &&self.m43.approx_eq_eps(&other.m43, eps) && self.m44.approx_eq_eps(&other.m44, eps)}
}impl<T, Src, Dst> Default for Transform3D<T, Src, Dst>
whereT: Zero + One,
{/// Returns the [identity transform](Self::identity).fn default() -> Self {Self::identity()}
}impl<T, Src, Dst> fmt::Debug for Transform3D<T, Src, Dst>
whereT: Copy + fmt::Debug + PartialEq + One + Zero,
{fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {if self.is_identity() {write!(f, "[I]")} else {self.to_array().fmt(f)}}
}#[cfg(feature = "mint")]
impl<T, Src, Dst> From<mint::RowMatrix4<T>> for Transform3D<T, Src, Dst> {#[rustfmt::skip]fn from(m: mint::RowMatrix4<T>) -> Self {Transform3D {m11: m.x.x, m12: m.x.y, m13: m.x.z, m14: m.x.w,m21: m.y.x, m22: m.y.y, m23: m.y.z, m24: m.y.w,m31: m.z.x, m32: m.z.y, m33: m.z.z, m34: m.z.w,m41: m.w.x, m42: m.w.y, m43: m.w.z, m44: m.w.w,_unit: PhantomData,}}
}
#[cfg(feature = "mint")]
impl<T, Src, Dst> From<Transform3D<T, Src, Dst>> for mint::RowMatrix4<T> {#[rustfmt::skip]fn from(t: Transform3D<T, Src, Dst>) -> Self {mint::RowMatrix4 {x: mint::Vector4 { x: t.m11, y: t.m12, z: t.m13, w: t.m14 },y: mint::Vector4 { x: t.m21, y: t.m22, z: t.m23, w: t.m24 },z: mint::Vector4 { x: t.m31, y: t.m32, z: t.m33, w: t.m34 },w: mint::Vector4 { x: t.m41, y: t.m42, z: t.m43, w: t.m44 },}}
}#[cfg(test)]
mod tests {use super::*;use crate::approxeq::ApproxEq;use crate::default;use crate::{point2, point3};use core::f32::consts::{FRAC_PI_2, PI};type Mf32 = default::Transform3D<f32>;// For convenience.fn rad(v: f32) -> Angle<f32> {Angle::radians(v)}#[test]pub fn test_translation() {let t1 = Mf32::translation(1.0, 2.0, 3.0);let t2 = Mf32::identity().pre_translate(vec3(1.0, 2.0, 3.0));let t3 = Mf32::identity().then_translate(vec3(1.0, 2.0, 3.0));assert_eq!(t1, t2);assert_eq!(t1, t3);assert_eq!(t1.transform_point3d(point3(1.0, 1.0, 1.0)),Some(point3(2.0, 3.0, 4.0)));assert_eq!(t1.transform_point2d(point2(1.0, 1.0)),Some(point2(2.0, 3.0)));assert_eq!(t1.then(&t1), Mf32::translation(2.0, 4.0, 6.0));assert!(!t1.is_2d());assert_eq!(Mf32::translation(1.0, 2.0, 3.0).to_2d(),Transform2D::translation(1.0, 2.0));}#[test]pub fn test_rotation() {let r1 = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2));let r2 = Mf32::identity().pre_rotate(0.0, 0.0, 1.0, rad(FRAC_PI_2));let r3 = Mf32::identity().then_rotate(0.0, 0.0, 1.0, rad(FRAC_PI_2));assert_eq!(r1, r2);assert_eq!(r1, r3);assert!(r1.transform_point3d(point3(1.0, 2.0, 3.0)).unwrap().approx_eq(&point3(-2.0, 1.0, 3.0)));assert!(r1.transform_point2d(point2(1.0, 2.0)).unwrap().approx_eq(&point2(-2.0, 1.0)));assert!(r1.then(&r1).approx_eq(&Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2 * 2.0))));assert!(r1.is_2d());assert!(r1.to_2d().approx_eq(&Transform2D::rotation(rad(FRAC_PI_2))));}#[test]pub fn test_scale() {let s1 = Mf32::scale(2.0, 3.0, 4.0);let s2 = Mf32::identity().pre_scale(2.0, 3.0, 4.0);let s3 = Mf32::identity().then_scale(2.0, 3.0, 4.0);assert_eq!(s1, s2);assert_eq!(s1, s3);assert!(s1.transform_point3d(point3(2.0, 2.0, 2.0)).unwrap().approx_eq(&point3(4.0, 6.0, 8.0)));assert!(s1.transform_point2d(point2(2.0, 2.0)).unwrap().approx_eq(&point2(4.0, 6.0)));assert_eq!(s1.then(&s1), Mf32::scale(4.0, 9.0, 16.0));assert!(!s1.is_2d());assert_eq!(Mf32::scale(2.0, 3.0, 0.0).to_2d(),Transform2D::scale(2.0, 3.0));}#[test]pub fn test_pre_then_scale() {let m = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2)).then_translate(vec3(6.0, 7.0, 8.0));let s = Mf32::scale(2.0, 3.0, 4.0);assert_eq!(m.then(&s), m.then_scale(2.0, 3.0, 4.0));}#[test]#[rustfmt::skip]pub fn test_ortho() {let (left, right, bottom, top) = (0.0f32, 1.0f32, 0.1f32, 1.0f32);let (near, far) = (-1.0f32, 1.0f32);let result = Mf32::ortho(left, right, bottom, top, near, far);let expected = Mf32::new(2.0, 0.0, 0.0, 0.0,0.0, 2.22222222, 0.0, 0.0,0.0, 0.0, -1.0, 0.0,-1.0, -1.22222222, -0.0, 1.0);assert!(result.approx_eq(&expected));}#[test]pub fn test_is_2d() {assert!(Mf32::identity().is_2d());assert!(Mf32::rotation(0.0, 0.0, 1.0, rad(0.7854)).is_2d());assert!(!Mf32::rotation(0.0, 1.0, 0.0, rad(0.7854)).is_2d());}#[test]#[rustfmt::skip]pub fn test_new_2d() {let m1 = Mf32::new_2d(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);let m2 = Mf32::new(1.0, 2.0, 0.0, 0.0,3.0, 4.0, 0.0, 0.0,0.0, 0.0, 1.0, 0.0,5.0, 6.0, 0.0, 1.0);assert_eq!(m1, m2);}#[test]pub fn test_inverse_simple() {let m1 = Mf32::identity();let m2 = m1.inverse().unwrap();assert!(m1.approx_eq(&m2));}#[test]pub fn test_inverse_scale() {let m1 = Mf32::scale(1.5, 0.3, 2.1);let m2 = m1.inverse().unwrap();assert!(m1.then(&m2).approx_eq(&Mf32::identity()));assert!(m2.then(&m1).approx_eq(&Mf32::identity()));}#[test]pub fn test_inverse_translate() {let m1 = Mf32::translation(-132.0, 0.3, 493.0);let m2 = m1.inverse().unwrap();assert!(m1.then(&m2).approx_eq(&Mf32::identity()));assert!(m2.then(&m1).approx_eq(&Mf32::identity()));}#[test]pub fn test_inverse_rotate() {let m1 = Mf32::rotation(0.0, 1.0, 0.0, rad(1.57));let m2 = m1.inverse().unwrap();assert!(m1.then(&m2).approx_eq(&Mf32::identity()));assert!(m2.then(&m1).approx_eq(&Mf32::identity()));}#[test]pub fn test_inverse_transform_point_2d() {let m1 = Mf32::translation(100.0, 200.0, 0.0);let m2 = m1.inverse().unwrap();assert!(m1.then(&m2).approx_eq(&Mf32::identity()));assert!(m2.then(&m1).approx_eq(&Mf32::identity()));let p1 = point2(1000.0, 2000.0);let p2 = m1.transform_point2d(p1);assert_eq!(p2, Some(point2(1100.0, 2200.0)));let p3 = m2.transform_point2d(p2.unwrap());assert_eq!(p3, Some(p1));}#[test]fn test_inverse_none() {assert!(Mf32::scale(2.0, 0.0, 2.0).inverse().is_none());assert!(Mf32::scale(2.0, 2.0, 2.0).inverse().is_some());}#[test]pub fn test_pre_post() {let m1 = default::Transform3D::identity().then_scale(1.0, 2.0, 3.0).then_translate(vec3(1.0, 2.0, 3.0));let m2 = default::Transform3D::identity().pre_translate(vec3(1.0, 2.0, 3.0)).pre_scale(1.0, 2.0, 3.0);assert!(m1.approx_eq(&m2));let r = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2));let t = Mf32::translation(2.0, 3.0, 0.0);let a = point3(1.0, 1.0, 1.0);assert!(r.then(&t).transform_point3d(a).unwrap().approx_eq(&point3(1.0, 4.0, 1.0)));assert!(t.then(&r).transform_point3d(a).unwrap().approx_eq(&point3(-4.0, 3.0, 1.0)));assert!(t.then(&r).transform_point3d(a).unwrap().approx_eq(&r.transform_point3d(t.transform_point3d(a).unwrap()).unwrap()));}#[test]fn test_size_of() {use core::mem::size_of;assert_eq!(size_of::<default::Transform3D<f32>>(),16 * size_of::<f32>());assert_eq!(size_of::<default::Transform3D<f64>>(),16 * size_of::<f64>());}#[test]#[rustfmt::skip]pub fn test_transform_associativity() {let m1 = Mf32::new(3.0, 2.0, 1.5, 1.0,0.0, 4.5, -1.0, -4.0,0.0, 3.5, 2.5, 40.0,0.0, 3.0, 0.0, 1.0);let m2 = Mf32::new(1.0, -1.0, 3.0, 0.0,-1.0, 0.5, 0.0, 2.0,1.5, -2.0, 6.0, 0.0,-2.5, 6.0, 1.0, 1.0);let p = point3(1.0, 3.0, 5.0);let p1 = m1.then(&m2).transform_point3d(p).unwrap();let p2 = m2.transform_point3d(m1.transform_point3d(p).unwrap()).unwrap();assert!(p1.approx_eq(&p2));}#[test]pub fn test_is_identity() {let m1 = default::Transform3D::identity();assert!(m1.is_identity());let m2 = m1.then_translate(vec3(0.1, 0.0, 0.0));assert!(!m2.is_identity());}#[test]pub fn test_transform_vector() {// Translation does not apply to vectors.let m = Mf32::translation(1.0, 2.0, 3.0);let v1 = vec3(10.0, -10.0, 3.0);assert_eq!(v1, m.transform_vector3d(v1));// While it does apply to points.assert_ne!(Some(v1.to_point()), m.transform_point3d(v1.to_point()));// same thing with 2d vectors/pointslet v2 = vec2(10.0, -5.0);assert_eq!(v2, m.transform_vector2d(v2));assert_ne!(Some(v2.to_point()), m.transform_point2d(v2.to_point()));}#[test]pub fn test_is_backface_visible() {// backface is not visible for rotate-x 0 degree.let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(0.0));assert!(!r1.is_backface_visible());// backface is not visible for rotate-x 45 degree.let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(PI * 0.25));assert!(!r1.is_backface_visible());// backface is visible for rotate-x 180 degree.let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(PI));assert!(r1.is_backface_visible());// backface is visible for rotate-x 225 degree.let r1 = Mf32::rotation(1.0, 0.0, 0.0, rad(PI * 1.25));assert!(r1.is_backface_visible());// backface is not visible for non-inverseable matrixlet r1 = Mf32::scale(2.0, 0.0, 2.0);assert!(!r1.is_backface_visible());}#[test]pub fn test_homogeneous() {#[rustfmt::skip]let m = Mf32::new(1.0, 2.0, 0.5, 5.0,3.0, 4.0, 0.25, 6.0,0.5, -1.0, 1.0, -1.0,-1.0, 1.0, -1.0, 2.0,);assert_eq!(m.transform_point2d_homogeneous(point2(1.0, 2.0)),HomogeneousVector::new(6.0, 11.0, 0.0, 19.0),);assert_eq!(m.transform_point3d_homogeneous(point3(1.0, 2.0, 4.0)),HomogeneousVector::new(8.0, 7.0, 4.0, 15.0),);}#[test]pub fn test_perspective_division() {let p = point2(1.0, 2.0);let mut m = Mf32::identity();assert!(m.transform_point2d(p).is_some());m.m44 = 0.0;assert_eq!(None, m.transform_point2d(p));m.m44 = 1.0;m.m24 = -1.0;assert_eq!(None, m.transform_point2d(p));}#[cfg(feature = "mint")]#[test]pub fn test_mint() {let m1 = Mf32::rotation(0.0, 0.0, 1.0, rad(FRAC_PI_2));let mm: mint::RowMatrix4<_> = m1.into();let m2 = Mf32::from(mm);assert_eq!(m1, m2);}
}
二、结构体定义
- #[repr©]: 这个属性确保结构体在内存中的布局与C语言中的结构体兼容。这对于与C语言库进行互操作时非常有用,可以确保数据的二进制表示一致。
- 条件编译属性 #[cfg_attr(feature = “serde”, derive(Serialize, Deserialize))]:
- 这个属性是条件编译的一部分,它检查是否启用了名为 serde 的特性(feature)。
- 如果启用了 serde 特性,那么 Transform3D 结构体将派生(derive)Serialize 和 Deserialize 这两个 trait,使得结构体可以被序列化和反序列化。这对于将数据保存到文件、通过网络传输数据等场景非常有用。
- #[cfg_attr(feature = “serde”, serde(bound(serialize = “T: Serialize”, deserialize = “T: Deserialize<'de>”)) )]:
- 这个属性进一步指定了当 serde 特性启用时,对于 T 类型有额外的约束。
- 在序列化时,T 必须实现 Serialize trait;在反序列化时,T 必须实现 Deserialize trait(注意这里 'de 是一个生命周期参数,用于泛型反序列化)。
- Transform3D 结构体有16个公开字段,分别表示4x4矩阵的行和列(m11 到 m44)。
- 最后一个字段 _unit 是一个 PhantomData<(Src, Dst)> 类型的实例。PhantomData 用于在类型系统中表示某种类型的存在,而不占用实际的内存空间。这里它用于保留 Src 和 Dst 类型信息,可能是为了泛型代码的类型安全性或约束,尽管在这段代码中它们并没有直接的功能作用。
- 总结
这个结构体可以用于图形编程、物理模拟等领域,其中3D变换矩阵非常常见,用于表示旋转、缩放、平移等变换。